These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 33305177)

  • 41. Multifunctional Latex/Polytetrafluoroethylene-Based Triboelectric Nanogenerator for Self-Powered Organ-like MXene/Metal-Organic Framework-Derived CuO Nanohybrid Ammonia Sensor.
    Wang D; Zhang D; Yang Y; Mi Q; Zhang J; Yu L
    ACS Nano; 2021 Feb; 15(2):2911-2919. PubMed ID: 33554603
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combination of Piezoelectric and Triboelectric Devices for Robotic Self-Powered Sensors.
    Han Z; Jiao P; Zhu Z
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357223
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing.
    Dong K; Wu Z; Deng J; Wang AC; Zou H; Chen C; Hu D; Gu B; Sun B; Wang ZL
    Adv Mater; 2018 Oct; 30(43):e1804944. PubMed ID: 30256476
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cellulose-Templated Nanomaterials for Nanogenerators and Self-Powered Sensors.
    Qian W; Yang Y
    Adv Mater; 2024 Oct; ():e2412858. PubMed ID: 39428909
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-Sterilized Flexible Single-Electrode Triboelectric Nanogenerator for Energy Harvesting and Dynamic Force Sensing.
    Guo H; Li T; Cao X; Xiong J; Jie Y; Willander M; Cao X; Wang N; Wang ZL
    ACS Nano; 2017 Jan; 11(1):856-864. PubMed ID: 28056170
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators.
    Wang C; Shi Q; Lee C
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458075
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystalline Porous Material-Based Nanogenerators: Recent Progress, Applications, Challenges, and Opportunities.
    Rajaboina RK; Khanapuram UK; Vivekananthan V; Khandelwal G; Potu S; Babu A; Madathil N; Velpula M; Kodali P
    Small; 2024 Jan; 20(1):e2306209. PubMed ID: 37641193
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Paper-Based Triboelectric Nanogenerators Made of Stretchable Interlocking Kirigami Patterns.
    Wu C; Wang X; Lin L; Guo H; Wang ZL
    ACS Nano; 2016 Apr; 10(4):4652-9. PubMed ID: 27058268
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-Powered Biosensors for Monitoring Human Physiological Changes.
    Xue Z; Wu L; Yuan J; Xu G; Wu Y
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832002
    [TBL] [Abstract][Full Text] [Related]  

  • 50. From Piezoelectric Nanogenerator to Non-Invasive Medical Sensor: A Review.
    Zhu Q; Wu T; Wang N
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671948
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent Progress in Hybridized Nanogenerators for Energy Scavenging.
    Zhang T; Yang T; Zhang M; Bowen CR; Yang Y
    iScience; 2020 Nov; 23(11):101689. PubMed ID: 33196020
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent Progress in Self-Powered Skin Sensors.
    Rao J; Chen Z; Zhao D; Yin Y; Wang X; Yi F
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31248225
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Advancements in Bio-inspired Self-Powered Wireless Sensors: Materials, Mechanisms, and Biomedical Applications.
    Farzin MA; Naghib SM; Rabiee N
    ACS Biomater Sci Eng; 2024 Mar; 10(3):1262-1301. PubMed ID: 38376103
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multifunctional Meta-Tribomaterial Nanogenerators for Energy Harvesting and Active Sensing.
    Barri K; Jiao P; Zhang Q; Chen J; Lin Wang Z; Alavi AH
    Nano Energy; 2021 Aug; 86():. PubMed ID: 34504740
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Progress of PVDF as a Functional Material for Triboelectric Nanogenerators and Self-Powered Sensors.
    Lee JP; Lee JW; Baik JM
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424465
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Latest Advances in Ink-Based Nanogenerators: From Materials to Applications.
    Shao B; Chen Z; Su H; Peng S; Song M
    Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892343
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Shared-Electrode-Based Hybridized Electromagnetic-Triboelectric Nanogenerator.
    Quan T; Wang ZL; Yang Y
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19573-8. PubMed ID: 27400787
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.
    Wang X; Wang S; Yang Y; Wang ZL
    ACS Nano; 2015 Apr; 9(4):4553-62. PubMed ID: 25844537
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Self-powered technology based on nanogenerators for biomedical applications.
    Zhang Y; Gao X; Wu Y; Gui J; Guo S; Zheng H; Wang ZL
    Exploration (Beijing); 2021 Aug; 1(1):90-114. PubMed ID: 37366464
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flexible Piezoelectric and Pyroelectric Nanogenerators Based on PAN/TMAB Nanocomposite Fiber Mats for Self-Power Multifunctional Sensors.
    Li X; Li Y; Li Y; Tan J; Zhang J; Zhang H; Liang J; Li T; Liu Y; Jiang H; Li P
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46789-46800. PubMed ID: 36194663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.