BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33305310)

  • 1. Leveraging heterogeneous network embedding for metabolic pathway prediction.
    M A Basher AR; Hallam SJ
    Bioinformatics; 2021 May; 37(6):822-829. PubMed ID: 33305310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic pathway inference using multi-label classification with rich pathway features.
    M A Basher AR; McLaughlin RJ; Hallam SJ
    PLoS Comput Biol; 2020 Oct; 16(10):e1008174. PubMed ID: 33001968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning architecture for metabolic pathway prediction.
    Baranwal M; Magner A; Elvati P; Saldinger J; Violi A; Hero AO
    Bioinformatics; 2020 Apr; 36(8):2547-2553. PubMed ID: 31879763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MLGL-MP: a Multi-Label Graph Learning framework enhanced by pathway interdependence for Metabolic Pathway prediction.
    Du BX; Zhao PC; Zhu B; Yiu SM; Nyamabo AK; Yu H; Shi JY
    Bioinformatics; 2022 Jun; 38(Suppl 1):i325-i332. PubMed ID: 35758801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mOWL: Python library for machine learning with biomedical ontologies.
    Zhapa-Camacho F; Kulmanov M; Hoehndorf R
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36534832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learned protein embeddings for machine learning.
    Yang KK; Wu Z; Bedbrook CN; Arnold FH
    Bioinformatics; 2018 Aug; 34(15):2642-2648. PubMed ID: 29584811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases.
    Caspi R; Altman T; Dreher K; Fulcher CA; Subhraveti P; Keseler IM; Kothari A; Krummenacker M; Latendresse M; Mueller LA; Ong Q; Paley S; Pujar A; Shearer AG; Travers M; Weerasinghe D; Zhang P; Karp PD
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D742-53. PubMed ID: 22102576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iDNA-ABT: advanced deep learning model for detecting DNA methylation with adaptive features and transductive information maximization.
    Yu Y; He W; Jin J; Xiao G; Cui L; Zeng R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4603-4610. PubMed ID: 34601568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks.
    Fu H; Huang F; Liu X; Qiu Y; Zhang W
    Bioinformatics; 2022 Jan; 38(2):426-434. PubMed ID: 34499148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LedPred: an R/bioconductor package to predict regulatory sequences using support vector machines.
    Seyres D; Darbo E; Perrin L; Herrmann C; González A
    Bioinformatics; 2016 Apr; 32(7):1091-3. PubMed ID: 26628586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning temporal difference embeddings for biomedical hypothesis generation.
    Zhou H; Jiang H; Yao W; Du X
    Bioinformatics; 2022 Nov; 38(23):5253-5261. PubMed ID: 36194003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PathwayMapper: a collaborative visual web editor for cancer pathways and genomic data.
    Bahceci I; Dogrusoz U; La KC; Babur Ö; Gao J; Schultz N
    Bioinformatics; 2017 Jul; 33(14):2238-2240. PubMed ID: 28334343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning graph representations of biochemical networks and its application to enzymatic link prediction.
    Jiang J; Liu LP; Hassoun S
    Bioinformatics; 2021 May; 37(6):793-799. PubMed ID: 33051674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-layered network-based pathway activity inference using directed random walks: application to predicting clinical outcomes in urologic cancer.
    Kim SY; Choe EK; Shivakumar M; Kim D; Sohn KA
    Bioinformatics; 2021 Aug; 37(16):2405-2413. PubMed ID: 33543748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer learning via multi-scale convolutional neural layers for human-virus protein-protein interaction prediction.
    Yang X; Yang S; Lian X; Wuchty S; Zhang Z
    Bioinformatics; 2021 Dec; 37(24):4771-4778. PubMed ID: 34273146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction.
    Wang D; Zeng S; Xu C; Qiu W; Liang Y; Joshi T; Xu D
    Bioinformatics; 2017 Dec; 33(24):3909-3916. PubMed ID: 29036382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensembling graph attention networks for human microbe-drug association prediction.
    Long Y; Wu M; Liu Y; Kwoh CK; Luo J; Li X
    Bioinformatics; 2020 Dec; 36(Suppl_2):i779-i786. PubMed ID: 33381844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel hybrid framework for metabolic pathways prediction based on the graph attention network.
    Yang Z; Liu J; Shah HA; Feng J
    BMC Bioinformatics; 2022 Sep; 23(Suppl 5):329. PubMed ID: 36171550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.