These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 33305377)
1. Phosphorus mobilization from intact soil monoliths flooded under simulated summer versus spring snowmelt with intermittent freeze-thaw conditions. Weerasekara C; Kumaragamage D; Akinremi W; Indraratne S; Goltz D J Environ Qual; 2021 Jan; 50(1):215-227. PubMed ID: 33305377 [TBL] [Abstract][Full Text] [Related]
2. Phosphorus mobilization in unamended and magnesium sulfate-amended soil monoliths under simulated snowmelt flooding. Vitharana UWA; Kumaragamage D; Balasooriya BLWK; Indraratne SP; Goltz D Environ Pollut; 2021 Oct; 287():117619. PubMed ID: 34426378 [TBL] [Abstract][Full Text] [Related]
3. Temperature and freezing effects on phosphorus release from soils to overlying floodwater under flooded-anaerobic conditions. Kumaragamage D; Concepcion A; Gregory C; Goltz D; Indraratne S; Amarawansha G J Environ Qual; 2020 May; 49(3):700-711. PubMed ID: 33016390 [TBL] [Abstract][Full Text] [Related]
4. Phosphorus release from intact soil monoliths of manure-amended fields under simulated snowmelt flooding. Concepcion A; Kumaragamage D; Akinremi W; Dharmakeerthi S; Goltz D; Indraratne S J Environ Qual; 2021 Jan; 50(1):252-263. PubMed ID: 33241863 [TBL] [Abstract][Full Text] [Related]
5. Phosphorus Release from Unamended and Gypsum- or Biochar-Amended Soils under Simulated Snowmelt and Summer Flooding Conditions. Dharmakeerthi RS; Kumaragamage D; Goltz D; Indraratne SP J Environ Qual; 2019 Jul; 48(4):822-830. PubMed ID: 31589686 [TBL] [Abstract][Full Text] [Related]
6. Release of phosphorus and metal(loid)s from manured soils to floodwater during a laboratory simulation of snowmelt flooding. Weerasinghe V; Amarakoon I; Kumaragamage D; Casson NJ; Indraratne S; Goltz D; Gao X J Environ Qual; 2024; 53(4):470-481. PubMed ID: 38688861 [TBL] [Abstract][Full Text] [Related]
7. Alum reduced phosphorus release from flooded soils under cold spring weather conditions. Lasisi A; Weerasekara CS; Kumaragamage D; Akinremi OO J Environ Qual; 2023; 52(3):718-729. PubMed ID: 36847149 [TBL] [Abstract][Full Text] [Related]
8. Phosphorus Release to Floodwater from Calcareous Surface Soils and Their Corresponding Subsurface Soils under Anaerobic Conditions. Jayarathne PD; Kumaragamage D; Indraratne S; Flaten D; Goltz D J Environ Qual; 2016 Jul; 45(4):1375-84. PubMed ID: 27380087 [TBL] [Abstract][Full Text] [Related]
9. Gypsum Amendment Reduces Redox-Induced Phosphorous Release from Freshly Manured, Flooded Soils to Floodwater. Dharmakeerthi RS; Kumaragamage D; Indraratne SP; Goltz D J Environ Qual; 2019 Jan; 48(1):127-135. PubMed ID: 30640341 [TBL] [Abstract][Full Text] [Related]
10. Phosphorus Mobilization from Manure-Amended and Unamended Alkaline Soils to Overlying Water during Simulated Flooding. Amarawansha EA; Kumaragamage D; Flaten D; Zvomuya F; Tenuta M J Environ Qual; 2015 Jul; 44(4):1252-62. PubMed ID: 26437107 [TBL] [Abstract][Full Text] [Related]
11. Phosphorus Release and Speciation in Manganese(IV) Oxide and Zeolite-Amended Flooded Soils. Attanayake CP; Kumaragamage D; Amarawansha G; Hettiarachchi GM; Indraratne SP; Goltz DM Environ Sci Technol; 2022 Jun; 56(12):8082-8093. PubMed ID: 35634990 [TBL] [Abstract][Full Text] [Related]
12. [Mobilization and transformation of phosphorus from water-soil interface of flooded soil]. Tian J; Liu L; Ding HS; Chen T Huan Jing Ke Xue; 2008 Jul; 29(7):1818-23. PubMed ID: 18828360 [TBL] [Abstract][Full Text] [Related]
14. Flooding-induced inorganic phosphorus transformations in two soils, with and without gypsum amendment. Attanayake CP; Dharmakeerthi RS; Kumaragamage D; Indraratne SP; Goltz D J Environ Qual; 2022 Jan; 51(1):90-100. PubMed ID: 34964984 [TBL] [Abstract][Full Text] [Related]
15. Redox-induced mobilization of phosphorus in groundwater affected arable soil profiles. Shaheen SM; Wang J; Baumann K; Wang SL; Leinweber P; Rinklebe J Chemosphere; 2021 Jul; 275():129928. PubMed ID: 33640743 [TBL] [Abstract][Full Text] [Related]
16. Soil acidification enhances the mobilization of phosphorus under anoxic conditions in an agricultural soil: Investigating the potential for loss of phosphorus to water and the associated environmental risk. Zhang S; Yang X; Hsu LC; Liu YT; Wang SL; White JR; Shaheen SM; Chen Q; Rinklebe J Sci Total Environ; 2021 Nov; 793():148531. PubMed ID: 34175597 [TBL] [Abstract][Full Text] [Related]
17. Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil. Beckers F; Awad YM; Beiyuan J; Abrigata J; Mothes S; Tsang DCW; Ok YS; Rinklebe J Environ Int; 2019 Jun; 127():276-290. PubMed ID: 30951944 [TBL] [Abstract][Full Text] [Related]
18. Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management. Shaheen SM; Frohne T; White JR; DeLaune RD; Rinklebe J J Environ Manage; 2017 Jan; 186(Pt 2):131-140. PubMed ID: 27240716 [TBL] [Abstract][Full Text] [Related]
19. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713 [TBL] [Abstract][Full Text] [Related]
20. [Dynamic change of dissolved iron in wetland soil solutions responding to freeze-thaw cycles]. Yu XF; Wang GP; Lü XG; Zou YC; Jiang M Huan Jing Ke Xue; 2010 May; 31(5):1387-94. PubMed ID: 20623881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]