These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 33305409)
1. Drought responsiveness in black pepper (Piper nigrum L.): Genes associated and development of a web-genomic resource. Negi A; George Kokkat J; Jasrotia RS; Madhavan S; Jaiswal S; Angadi UB; Iquebal MA; Kalathil Palliyarakkal M; Palaniyandi U; Rai A; Kumar D Physiol Plant; 2021 Jun; 172(2):669-683. PubMed ID: 33305409 [TBL] [Abstract][Full Text] [Related]
2. Genome wide identification and characterization of microsatellite markers in black pepper (Piper nigrum): A valuable resource for boosting genomics applications. Kumari R; Wankhede DP; Bajpai A; Maurya A; Prasad K; Gautam D; Rangan P; Latha M; John K J; A S; Bhat KV; Gaikwad AB PLoS One; 2019; 14(12):e0226002. PubMed ID: 31834893 [TBL] [Abstract][Full Text] [Related]
3. De Novo Assembly and Characterization of Fruit Transcriptome in Black Pepper (Piper nigrum). Hu L; Hao C; Fan R; Wu B; Tan L; Wu H PLoS One; 2015; 10(6):e0129822. PubMed ID: 26121657 [TBL] [Abstract][Full Text] [Related]
4. Unravelling the complexity of microRNA-mediated gene regulation in black pepper (Piper nigrum L.) using high-throughput small RNA profiling. Asha S; Sreekumar S; Soniya EV Plant Cell Rep; 2016 Jan; 35(1):53-63. PubMed ID: 26400683 [TBL] [Abstract][Full Text] [Related]
5. De novo transcriptome sequencing reveals a considerable bias in the incidence of simple sequence repeats towards the downstream of 'Pre-miRNAs' of black pepper. Joy N; Asha S; Mallika V; Soniya EV PLoS One; 2013; 8(3):e56694. PubMed ID: 23469176 [TBL] [Abstract][Full Text] [Related]
6. De novo transcriptome sequencing of black pepper (Piper nigrum L.) and an analysis of genes involved in phenylpropanoid metabolism in response to Phytophthora capsici. Hao C; Xia Z; Fan R; Tan L; Hu L; Wu B; Wu H BMC Genomics; 2016 Oct; 17(1):822. PubMed ID: 27769171 [TBL] [Abstract][Full Text] [Related]
7. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach. Mehta RH; Ponnuchamy M; Kumar J; Reddy NR Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374 [TBL] [Abstract][Full Text] [Related]
8. Rapid Genome-Wide Location-Specific Polymorphic SSR Marker Discovery in Black Pepper by GBS Approach. Negi A; Singh K; Jaiswal S; Kokkat JG; Angadi UB; Iquebal MA; Umadevi P; Rai A; Kumar D Front Plant Sci; 2022; 13():846937. PubMed ID: 35712605 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional Sequencing and Gene Expression Analysis of Various Genes in Fruit Development of Three Different Black Pepper ( Khew CY; Harikrishna JA; Wee WY; Lau ET; Hwang SS Int J Genomics; 2020; 2020():1540915. PubMed ID: 32399475 [TBL] [Abstract][Full Text] [Related]
10. Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Jaiswal S; Antala TJ; Mandavia MK; Chopra M; Jasrotia RS; Tomar RS; Kheni J; Angadi UB; Iquebal MA; Golakia BA; Rai A; Kumar D Sci Rep; 2018 Feb; 8(1):3382. PubMed ID: 29467369 [TBL] [Abstract][Full Text] [Related]
11. High-throughput sequencing of black pepper root transcriptome. Gordo SM; Pinheiro DG; Moreira EC; Rodrigues SM; Poltronieri MC; de Lemos OF; da Silva IT; Ramos RT; Silva A; Schneider H; Silva WA; Sampaio I; Darnet S BMC Plant Biol; 2012 Sep; 12():168. PubMed ID: 22984782 [TBL] [Abstract][Full Text] [Related]
12. Genetic diversity in the germplasm of black pepper determined by EST-SSR markers. Wu BD; Fan R; Hu LS; Wu HS; Hao CY Genet Mol Res; 2016 Mar; 15(1):. PubMed ID: 27050963 [TBL] [Abstract][Full Text] [Related]
13. Hormonal and transcriptional analyses of fruit development and ripening in different varieties of black pepper (Piper nigrum). Khew CY; Mori IC; Matsuura T; Hirayama T; Harikrishna JA; Lau ET; Augustine Mercer ZJ; Hwang SS J Plant Res; 2020 Jan; 133(1):73-94. PubMed ID: 31853665 [TBL] [Abstract][Full Text] [Related]
14. De novo transcriptome profiling unveils the regulation of phenylpropanoid biosynthesis in unripeĀ Piper nigrum berries. Sreekumar S; Divya K; Joy N; Soniya EV BMC Plant Biol; 2022 Oct; 22(1):501. PubMed ID: 36284267 [TBL] [Abstract][Full Text] [Related]
15. Genome-Wide Identification, Characterization, and Expression Analysis of the MYB-R2R3 Gene Family in Black Pepper ( Fan R; Huang K; Zhao Z; Hao Y; Guan X; Luo H; Hao C Int J Mol Sci; 2024 Sep; 25(18):. PubMed ID: 39337340 [TBL] [Abstract][Full Text] [Related]
16. Genome-Wide Identification and Functional Exploration of SBP-Box Gene Family in Black Pepper ( Li J; Fan R; Wu B; Ji X; Hao C Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828347 [TBL] [Abstract][Full Text] [Related]
17. A preliminary assessment of genetic relationships among agronomically important cultivars of black pepper. Joy N; Abraham Z; Soniya EV BMC Genet; 2007 Jun; 8():42. PubMed ID: 17603884 [TBL] [Abstract][Full Text] [Related]
18. A systematic review on black pepper Takooree H; Aumeeruddy MZ; Rengasamy KRR; Venugopala KN; Jeewon R; Zengin G; Mahomoodally MF Crit Rev Food Sci Nutr; 2019; 59(sup1):S210-S243. PubMed ID: 30740986 [TBL] [Abstract][Full Text] [Related]
19. Genetic diversity and population structure of Piper nigrum (black pepper) accessions based on next-generation SNP markers. Wimalarathna NA; Wickramasuriya AM; Metschina D; Cauz-Santos LA; Bandupriya D; Ariyawansa KGSU; Gopallawa B; Chase MW; Samuel R; Silva TD PLoS One; 2024; 19(6):e0305990. PubMed ID: 38924027 [TBL] [Abstract][Full Text] [Related]
20. The chloroplast genome of black pepper ( Gaikwad AB; Kaila T; Maurya A; Kumari R; Rangan P; Wankhede DP; Bhat KV Front Plant Sci; 2022; 13():1095781. PubMed ID: 36714762 [No Abstract] [Full Text] [Related] [Next] [New Search]