BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33305571)

  • 1. Selective Chemical Functionalization at N6-Methyladenosine Residues in DNA Enabled by Visible-Light-Mediated Photoredox Catalysis.
    Nappi M; Hofer A; Balasubramanian S; Gaunt MJ
    J Am Chem Soc; 2020 Dec; 142(51):21484-21492. PubMed ID: 33305571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis.
    Beatty JW; Stephenson CR
    Acc Chem Res; 2015 May; 48(5):1474-84. PubMed ID: 25951291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoredox-Catalyzed Site-Selective α-C(sp
    Ashley MA; Yamauchi C; Chu JCK; Otsuka S; Yorimitsu H; Rovis T
    Angew Chem Int Ed Engl; 2019 Mar; 58(12):4002-4006. PubMed ID: 30768740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalization of DNA-Tagged Alkenes Enabled by Visible-Light-Induced C-H Activation of
    Wu R; Du T; Sun W; Shaginian A; Gao S; Li J; Wan J; Liu G
    Org Lett; 2021 May; 23(9):3486-3490. PubMed ID: 33909444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer.
    Staveness D; Bosque I; Stephenson CR
    Acc Chem Res; 2016 Oct; 49(10):2295-2306. PubMed ID: 27529484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-encoded CH functionality via photoredox-mediated hydrogen atom transformation catalysis.
    Shan J; Ling X; Liu J; Wang X; Lu X
    Bioorg Med Chem; 2021 Jul; 42():116234. PubMed ID: 34098191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected C-C-bond cleavage reactions.
    Zhu S; Das A; Bui L; Zhou H; Curran DP; Rueping M
    J Am Chem Soc; 2013 Feb; 135(5):1823-9. PubMed ID: 23330701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoredox catalysis in a complex pharmaceutical setting: toward the preparation of JAK2 inhibitor LY2784544.
    Douglas JJ; Cole KP; Stephenson CR
    J Org Chem; 2014 Dec; 79(23):11631-43. PubMed ID: 25356724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Highly Efficient Gold-Catalyzed Photoredox α-C(sp(3))-H Alkynylation of Tertiary Aliphatic Amines with Sunlight.
    Xie J; Shi S; Zhang T; Mehrkens N; Rudolph M; Hashmi AS
    Angew Chem Int Ed Engl; 2015 May; 54(20):6046-50. PubMed ID: 25823756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct sp3 C-H amination of nitrogen-containing benzoheterocycles mediated by visible-light-photoredox catalysts.
    Miyake Y; Nakajima K; Nishibayashi Y
    Chemistry; 2012 Dec; 18(51):16473-7. PubMed ID: 23150225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Aryl C-H Amination with Primary Amines Using Organic Photoredox Catalysis.
    Margrey KA; Levens A; Nicewicz DA
    Angew Chem Int Ed Engl; 2017 Dec; 56(49):15644-15648. PubMed ID: 29063646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible-light photoredox catalyzed oxidative Strecker reaction.
    Rueping M; Zhu S; Koenigs RM
    Chem Commun (Camb); 2011 Dec; 47(47):12709-11. PubMed ID: 22041859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoredox-Catalyzed Deaminative Alkylation via C-N Bond Activation of Primary Amines.
    Ashley MA; Rovis T
    J Am Chem Soc; 2020 Oct; 142(43):18310-18316. PubMed ID: 33058665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Functionalisation of 5-Methylcytosine by Organic Photoredox Catalysis.
    Simpson MM; Lam CC; Goodman JM; Balasubramanian S
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202304756. PubMed ID: 37118885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible-light-mediated addition of α-aminoalkyl radicals to [60]fullerene by using photoredox catalysts.
    Miyake Y; Ashida Y; Nakajima K; Nishibayashi Y
    Chemistry; 2014 May; 20(20):6120-5. PubMed ID: 24700543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synthesis of oligoribonucleotides containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines via post-synthetic modification of precursor oligomers.
    Kierzek E; Kierzek R
    Nucleic Acids Res; 2003 Aug; 31(15):4461-71. PubMed ID: 12888506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective sp
    Le C; Liang Y; Evans RW; Li X; MacMillan DWC
    Nature; 2017 Jul; 547(7661):79-83. PubMed ID: 28636596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radical carbon-carbon bond formations enabled by visible light active photocatalysts.
    Wallentin CJ; Nguyen JD; Stephenson CR
    Chimia (Aarau); 2012; 66(6):394-8. PubMed ID: 22871282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of Dithianyl and Dioxolanyl Radicals Using Photoredox Catalysis: Application in the Total Synthesis of the Danshenspiroketallactones via Radical Relay Chemistry.
    Deng Y; Nguyen MD; Zou Y; Houk KN; Smith AB
    Org Lett; 2019 Mar; 21(6):1708-1712. PubMed ID: 30807194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.