BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 33305719)

  • 1. Application of nanotechnology in circumventing immunotolerance.
    Ma Y; Shen Y; Zhu B; Li D; Liu J
    Pharmazie; 2020 Oct; 75(10):470-477. PubMed ID: 33305719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotechnology Approaches to Improving Cancer Immunotherapy.
    Hagan CT; Medik YB; Wang AZ
    Adv Cancer Res; 2018; 139():35-56. PubMed ID: 29941106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-Enhanced Cancer Immunotherapy: Immunology Encounters Nanotechnology.
    Bockamp E; Rosigkeit S; Siegl D; Schuppan D
    Cells; 2020 Sep; 9(9):. PubMed ID: 32942725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Regulation of Tregs in Cancer: Opportunities for Immunotherapy.
    Wang H; Franco F; Ho PC
    Trends Cancer; 2017 Aug; 3(8):583-592. PubMed ID: 28780935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle-Based Phototriggered Cancer Immunotherapy and Its Domino Effect in the Tumor Microenvironment.
    Rajendrakumar SK; Uthaman S; Cho CS; Park IK
    Biomacromolecules; 2018 Jun; 19(6):1869-1887. PubMed ID: 29677439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective.
    Lan H; Zhang W; Jin K; Liu Y; Wang Z
    Drug Deliv; 2020 Dec; 27(1):1248-1262. PubMed ID: 32865029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turning cold tumors into hot tumors: harnessing the potential of tumor immunity using nanoparticles.
    Rodallec A; Sicard G; Fanciullino R; Benzekry S; Lacarelle B; Milano G; Ciccolini J
    Expert Opin Drug Metab Toxicol; 2018 Nov; 14(11):1139-1147. PubMed ID: 30354685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer nanoimmunotherapy using advanced pharmaceutical nanotechnology.
    Li W; Wei H; Li H; Gao J; Feng SS; Guo Y
    Nanomedicine (Lond); 2014 Nov; 9(16):2587-605. PubMed ID: 25490427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy.
    Lim S; Park J; Shim MK; Um W; Yoon HY; Ryu JH; Lim DK; Kim K
    Theranostics; 2019; 9(25):7906-7923. PubMed ID: 31695807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of costimulatory and inhibitory receptors in FoxP3
    Toker A; Ohashi PS
    Adv Cancer Res; 2019; 144():193-261. PubMed ID: 31349899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the Immune Component of Tumor Microenvironment in the Efficiency of Cancer Treatment: Perspectives for the Personalized Therapy.
    Stakheyeva M; Riabov V; Mitrofanova I; Litviakov N; Choynzonov E; Cherdyntseva N; Kzhyshkowska J
    Curr Pharm Des; 2017; 23(32):4807-4826. PubMed ID: 28714406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticles for tumor immunotherapy.
    Zang X; Zhao X; Hu H; Qiao M; Deng Y; Chen D
    Eur J Pharm Biopharm; 2017 Jun; 115():243-256. PubMed ID: 28323111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor immune microenvironment modulation-based drug delivery strategies for cancer immunotherapy.
    Han S; Huang K; Gu Z; Wu J
    Nanoscale; 2020 Jan; 12(2):413-436. PubMed ID: 31829394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy.
    Lei X; Lei Y; Li JK; Du WX; Li RG; Yang J; Li J; Li F; Tan HB
    Cancer Lett; 2020 Feb; 470():126-133. PubMed ID: 31730903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy.
    Gao S; Yang D; Fang Y; Lin X; Jin X; Wang Q; Wang X; Ke L; Shi K
    Theranostics; 2019; 9(1):126-151. PubMed ID: 30662558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics.
    Grimaldi AM; Incoronato M; Salvatore M; Soricelli A
    Nanomedicine (Lond); 2017 Oct; 12(19):2349-2365. PubMed ID: 28868980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmenting the synergies of chemotherapy and immunotherapy through drug delivery.
    Kim J; Manspeaker MP; Thomas SN
    Acta Biomater; 2019 Apr; 88():1-14. PubMed ID: 30769136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lymph-directed immunotherapy - Harnessing endogenous lymphatic distribution pathways for enhanced therapeutic outcomes in cancer.
    Feeney OM; Gracia G; Brundel DHS; Trevaskis NL; Cao E; Kaminskas LM; Porter CJH
    Adv Drug Deliv Rev; 2020; 160():115-135. PubMed ID: 33039497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges.
    Martin JD; Cabral H; Stylianopoulos T; Jain RK
    Nat Rev Clin Oncol; 2020 Apr; 17(4):251-266. PubMed ID: 32034288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of nanotechnology in enhancing immunotherapy for cancer treatment: current effects and perspective.
    Li Y; Ayala-Orozco C; Rauta PR; Krishnan S
    Nanoscale; 2019 Oct; 11(37):17157-17178. PubMed ID: 31531445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.