These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33305827)

  • 1. Mineralized paper scaffolds for bone tissue engineering.
    Wu X; Walsh K; Suvarnapathaki S; Lantigua D; McCarthy C; Camci-Unal G
    Biotechnol Bioeng; 2021 Mar; 118(3):1411-1418. PubMed ID: 33305827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyhydroxybutyrate-based osteoinductive mineralized electrospun structures that mimic components and tissue interfaces of the osteon for bone tissue engineering.
    Sriram M; Priya S; Katti DS
    Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38471166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering.
    Lei Y; Xu Z; Ke Q; Yin W; Chen Y; Zhang C; Guo Y
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():134-142. PubMed ID: 28024569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineralization of Biomaterials for Bone Tissue Engineering.
    Wu X; Walsh K; Hoff BL; Camci-Unal G
    Bioengineering (Basel); 2020 Oct; 7(4):. PubMed ID: 33092121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing Collagen Scaffolds for Bone Engineering: Effects of Cross-linking and Mineral Content on Structural Contraction and Osteogenesis.
    Lee JC; Pereira CT; Ren X; Huang W; Bischoff D; Weisgerber DW; Yamaguchi DT; Harley BA; Miller TA
    J Craniofac Surg; 2015 Sep; 26(6):1992-6. PubMed ID: 26147021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of dexamethasone-loaded mesoporous silica nanoparticles into mineralized porous biocomposite scaffolds for improving osteogenic activity.
    Zhou X; Liu P; Nie W; Peng C; Li T; Qiang L; He C; Wang J
    Int J Biol Macromol; 2020 Apr; 149():116-126. PubMed ID: 31987948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: Physicochemical, mechanical and in vivo evaluations.
    El-Fiqi A; Kim JH; Kim HW
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110660. PubMed ID: 32204088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects.
    Wang Y; Van Manh N; Wang H; Zhong X; Zhang X; Li C
    Int J Nanomedicine; 2016; 11():2053-67. PubMed ID: 27274235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralized collagen scaffolds induce hMSC osteogenesis and matrix remodeling.
    Weisgerber DW; Caliari SR; Harley BA
    Biomater Sci; 2015 Mar; 3(3):533-42. PubMed ID: 25937924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Piezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation.
    Chernozem RV; Surmeneva MA; Shkarina SN; Loza K; Epple M; Ulbricht M; Cecilia A; Krause B; Baumbach T; Abalymov AA; Parakhonskiy BV; Skirtach AG; Surmenev RA
    ACS Appl Mater Interfaces; 2019 May; 11(21):19522-19533. PubMed ID: 31058486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro mineralization of human mesenchymal stem cells on three-dimensional type I collagen versus PLGA scaffolds: a comparative analysis.
    Kruger EA; Im DD; Bischoff DS; Pereira CT; Huang W; Rudkin GH; Yamaguchi DT; Miller TA
    Plast Reconstr Surg; 2011 Jun; 127(6):2301-2311. PubMed ID: 21617464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering.
    Ni P; Fu S; Fan M; Guo G; Shi S; Peng J; Luo F; Qian Z
    Int J Nanomedicine; 2011; 6():3065-75. PubMed ID: 22163160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decellularized Apple-Derived Scaffolds for Bone Tissue Engineering In Vitro and In Vivo.
    Leblanc Latour M; Tarar M; Hickey RJ; Cuerrier CM; Catelas I; Pelling AE
    J Vis Exp; 2024 Feb; (204):. PubMed ID: 38465930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
    Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L
    Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineralized Hydrogels Induce Bone Regeneration in Critical Size Cranial Defects.
    Wu X; Zhang T; Hoff B; Suvarnapathaki S; Lantigua D; McCarthy C; Wu B; Camci-Unal G
    Adv Healthc Mater; 2021 Feb; 10(4):e2001101. PubMed ID: 32940013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.
    Martins AM; Pham QP; Malafaya PB; Raphael RM; Kasper FK; Reis RL; Mikos AG
    Tissue Eng Part A; 2009 Aug; 15(8):1953-63. PubMed ID: 19327018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mineral Distribution Spatially Patterns Bone Marrow Stromal Cell Behavior on Monolithic Bone Scaffolds.
    Zhou H; Boys AJ; Harrod JB; Bonassar LJ; Estroff LA
    Acta Biomater; 2020 Aug; 112():274-285. PubMed ID: 32479819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.