BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 33306263)

  • 1. Artificial Heterointerfaces Achieve Delicate Reaction Kinetics towards Hydrogen Evolution and Hydrazine Oxidation Catalysis.
    Qian Q; Zhang J; Li J; Li Y; Jin X; Zhu Y; Liu Y; Li Z; El-Harairy A; Xiao C; Zhang G; Xie Y
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5984-5993. PubMed ID: 33306263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative Ni(Co)-Ru-P Sites Activate Dehydrogenation for Hydrazine Oxidation Assisting Self-powered H
    Hu Y; Chao T; Li Y; Liu P; Zhao T; Yu G; Chen C; Liang X; Jin H; Niu S; Chen W; Wang D; Li Y
    Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202308800. PubMed ID: 37428114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating dehydrogenation kinetics through dual-doping Co
    Liu Y; Zhang J; Li Y; Qian Q; Li Z; Zhu Y; Zhang G
    Nat Commun; 2020 Apr; 11(1):1853. PubMed ID: 32296070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bifunctional zeolitic imidazolate framework-67 coupling with CoNiSe electrocatalyst for efficient hydrazine-assisted water splitting.
    Liu W; Shi T; Feng Z
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):888-899. PubMed ID: 36356454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual Nanoislands on Ni/C Hybrid Nanosheet Activate Superior Hydrazine Oxidation-Assisted High-Efficiency H
    Zhu Y; Zhang J; Qian Q; Li Y; Li Z; Liu Y; Xiao C; Zhang G; Xie Y
    Angew Chem Int Ed Engl; 2022 Jan; 61(2):e202113082. PubMed ID: 34669234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly enhanced hydrazine oxidation on bifunctional Ni tailored by alloying for energy-efficient hydrogen production.
    Zhao Y; Sun Y; Li H; Zeng S; Li R; Yao Q; Chen H; Zheng Y; Qu K
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1848-1856. PubMed ID: 37683412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palladium cobalt alloy encapsulated in carbon nanofibers as bifunctional electrocatalyst for high-efficiency overall hydrazine splitting.
    Ao Y; Chen S; Wang C; Lu X
    J Colloid Interface Sci; 2021 Nov; 601():495-504. PubMed ID: 34090027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhydrophilic Ni-based Multicomponent Nanorod-Confined-Nanoflake Array Electrode Achieves Waste-Battery-Driven Hydrogen Evolution and Hydrazine Oxidation.
    Li Y; Li J; Qian Q; Jin X; Liu Y; Li Z; Zhu Y; Guo Y; Zhang G
    Small; 2021 May; 17(19):e2008148. PubMed ID: 33768679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption Site Regulations of [W-O]-Doped CoP Boosting the Hydrazine Oxidation-Coupled Hydrogen Evolution at Elevated Current Density.
    Meng G; Chang Z; Zhu L; Chen C; Chen Y; Tian H; Luo W; Sun W; Cui X; Shi J
    Nanomicro Lett; 2023 Sep; 15(1):212. PubMed ID: 37707720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vanadium Substitution Steering Reaction Kinetics Acceleration for Ni
    Zhang J; Liu Y; Li J; Jin X; Li Y; Qian Q; Wang Y; El-Harairy A; Li Z; Zhu Y; Zhang H; Cheng M; Zeng S; Zhang G
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3881-3890. PubMed ID: 33464037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally constructed stable Zn-doped NiCoO
    Kashale AA; Rasal AS; Hsu FC; Chen C; Kulkarni SN; Chang CH; Chang JY; Lai Y; Chen IP
    J Colloid Interface Sci; 2023 Jun; 640():737-749. PubMed ID: 36898180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bifunctional nanoporous Ni-Co-Se electrocatalyst with a superaerophobic surface for water and hydrazine oxidation.
    Feng Z; Wang E; Huang S; Liu J
    Nanoscale; 2020 Feb; 12(7):4426-4434. PubMed ID: 32026923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ruthenium Nanoclusters and Single Atoms on α-MoC/N-Doped Carbon Achieves Low-Input/Input-Free Hydrogen Evolution via Decoupled/Coupled Hydrazine Oxidation.
    Li Y; Niu S; Liu P; Pan R; Zhang H; Ahmad N; Shi Y; Liang X; Cheng M; Chen S; Du J; Hu M; Wang D; Chen W; Li Y
    Angew Chem Int Ed Engl; 2024 May; ():e202316755. PubMed ID: 38739420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust and Highly Efficient Electrochemical Hydrogen Production from Hydrazine-Assisted Water Electrolysis Enabled by the Metal-Support Interaction of Ru/C Composites.
    Wang W; Qian Q; Li Y; Zhu Y; Feng Y; Cheng M; Zhang H; Zhang Y; Zhang G
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26852-26862. PubMed ID: 37225429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1D/3D Heterogeneous Assembling Body of Cobalt Nitrides for Highly Efficient Overall Hydrazine Splitting and Supercapacitors.
    Xiong D; He X; Liu X; Gong S; Xu C; Tu Z; Wu D; Wang J; Chen Z
    Small; 2024 Feb; 20(8):e2306100. PubMed ID: 37817367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifunctional nanoporous Ni-Zn electrocatalysts with super-aerophobic surface for high-performance hydrazine-assisted hydrogen production.
    Zhang H; Feng Z; Wang L; Li D; Xing P
    Nanotechnology; 2020 Sep; 31(36):365701. PubMed ID: 32413873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of Nitrogen-Doped Biphasic Transition-Metal Sulfide Nanosheet Electrode for Energy-Efficient Hydrogen Production via Urea Electrolysis.
    Xie H; Feng Y; He X; Zhu Y; Li Z; Liu H; Zeng S; Qian Q; Zhang G
    Small; 2023 Apr; 19(17):e2207425. PubMed ID: 36703521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bifunctional single-atomic Mn sites for energy-efficient hydrogen production.
    Peng X; Hou J; Mi Y; Sun J; Qi G; Qin Y; Zhang S; Qiu Y; Luo J; Liu X
    Nanoscale; 2021 Mar; 13(9):4767-4773. PubMed ID: 33650623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NiFeP nanosheets for efficient and durable hydrazine-assisted electrolytic hydrogen production.
    Hou J; Mei K; Jiang T; Yu X; Wu M
    Dalton Trans; 2024 Mar; 53(10):4574-4579. PubMed ID: 38349199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heteroatom-Induced Accelerated Kinetics on Nickel Selenide for Highly Efficient Hydrazine-Assisted Water Splitting and Zn-Hydrazine Battery.
    Wang HY; Wang L; Ren JT; Tian WW; Sun ML; Yuan ZY
    Nanomicro Lett; 2023 Jun; 15(1):155. PubMed ID: 37337062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.