These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 33306263)
1. Artificial Heterointerfaces Achieve Delicate Reaction Kinetics towards Hydrogen Evolution and Hydrazine Oxidation Catalysis. Qian Q; Zhang J; Li J; Li Y; Jin X; Zhu Y; Liu Y; Li Z; El-Harairy A; Xiao C; Zhang G; Xie Y Angew Chem Int Ed Engl; 2021 Mar; 60(11):5984-5993. PubMed ID: 33306263 [TBL] [Abstract][Full Text] [Related]
2. Cooperative Ni(Co)-Ru-P Sites Activate Dehydrogenation for Hydrazine Oxidation Assisting Self-powered H Hu Y; Chao T; Li Y; Liu P; Zhao T; Yu G; Chen C; Liang X; Jin H; Niu S; Chen W; Wang D; Li Y Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202308800. PubMed ID: 37428114 [TBL] [Abstract][Full Text] [Related]
3. Manipulating dehydrogenation kinetics through dual-doping Co Liu Y; Zhang J; Li Y; Qian Q; Li Z; Zhu Y; Zhang G Nat Commun; 2020 Apr; 11(1):1853. PubMed ID: 32296070 [TBL] [Abstract][Full Text] [Related]
4. Bifunctional zeolitic imidazolate framework-67 coupling with CoNiSe electrocatalyst for efficient hydrazine-assisted water splitting. Liu W; Shi T; Feng Z J Colloid Interface Sci; 2023 Jan; 630(Pt B):888-899. PubMed ID: 36356454 [TBL] [Abstract][Full Text] [Related]
5. Dual Nanoislands on Ni/C Hybrid Nanosheet Activate Superior Hydrazine Oxidation-Assisted High-Efficiency H Zhu Y; Zhang J; Qian Q; Li Y; Li Z; Liu Y; Xiao C; Zhang G; Xie Y Angew Chem Int Ed Engl; 2022 Jan; 61(2):e202113082. PubMed ID: 34669234 [TBL] [Abstract][Full Text] [Related]
6. Highly enhanced hydrazine oxidation on bifunctional Ni tailored by alloying for energy-efficient hydrogen production. Zhao Y; Sun Y; Li H; Zeng S; Li R; Yao Q; Chen H; Zheng Y; Qu K J Colloid Interface Sci; 2023 Dec; 652(Pt B):1848-1856. PubMed ID: 37683412 [TBL] [Abstract][Full Text] [Related]
7. Palladium cobalt alloy encapsulated in carbon nanofibers as bifunctional electrocatalyst for high-efficiency overall hydrazine splitting. Ao Y; Chen S; Wang C; Lu X J Colloid Interface Sci; 2021 Nov; 601():495-504. PubMed ID: 34090027 [TBL] [Abstract][Full Text] [Related]
8. Superhydrophilic Ni-based Multicomponent Nanorod-Confined-Nanoflake Array Electrode Achieves Waste-Battery-Driven Hydrogen Evolution and Hydrazine Oxidation. Li Y; Li J; Qian Q; Jin X; Liu Y; Li Z; Zhu Y; Guo Y; Zhang G Small; 2021 May; 17(19):e2008148. PubMed ID: 33768679 [TBL] [Abstract][Full Text] [Related]
9. Adsorption Site Regulations of [W-O]-Doped CoP Boosting the Hydrazine Oxidation-Coupled Hydrogen Evolution at Elevated Current Density. Meng G; Chang Z; Zhu L; Chen C; Chen Y; Tian H; Luo W; Sun W; Cui X; Shi J Nanomicro Lett; 2023 Sep; 15(1):212. PubMed ID: 37707720 [TBL] [Abstract][Full Text] [Related]
10. Vanadium Substitution Steering Reaction Kinetics Acceleration for Ni Zhang J; Liu Y; Li J; Jin X; Li Y; Qian Q; Wang Y; El-Harairy A; Li Z; Zhu Y; Zhang H; Cheng M; Zeng S; Zhang G ACS Appl Mater Interfaces; 2021 Jan; 13(3):3881-3890. PubMed ID: 33464037 [TBL] [Abstract][Full Text] [Related]
12. A bifunctional nanoporous Ni-Co-Se electrocatalyst with a superaerophobic surface for water and hydrazine oxidation. Feng Z; Wang E; Huang S; Liu J Nanoscale; 2020 Feb; 12(7):4426-4434. PubMed ID: 32026923 [TBL] [Abstract][Full Text] [Related]
13. Ruthenium Nanoclusters and Single Atoms on α-MoC/N-Doped Carbon Achieves Low-Input/Input-Free Hydrogen Evolution via Decoupled/Coupled Hydrazine Oxidation. Li Y; Niu S; Liu P; Pan R; Zhang H; Ahmad N; Shi Y; Liang X; Cheng M; Chen S; Du J; Hu M; Wang D; Chen W; Li Y Angew Chem Int Ed Engl; 2024 Jul; 63(30):e202316755. PubMed ID: 38739420 [TBL] [Abstract][Full Text] [Related]
14. Superhydrophilicity and superaerophobicity Ni/Ni Hao M; Li C; Wu M; Li Q; Xiao Z; Shen D; Wang W J Colloid Interface Sci; 2025 Feb; 679(Pt A):966-974. PubMed ID: 39418899 [TBL] [Abstract][Full Text] [Related]
15. Robust and Highly Efficient Electrochemical Hydrogen Production from Hydrazine-Assisted Water Electrolysis Enabled by the Metal-Support Interaction of Ru/C Composites. Wang W; Qian Q; Li Y; Zhu Y; Feng Y; Cheng M; Zhang H; Zhang Y; Zhang G ACS Appl Mater Interfaces; 2023 Jun; 15(22):26852-26862. PubMed ID: 37225429 [TBL] [Abstract][Full Text] [Related]
16. 1D/3D Heterogeneous Assembling Body of Cobalt Nitrides for Highly Efficient Overall Hydrazine Splitting and Supercapacitors. Xiong D; He X; Liu X; Gong S; Xu C; Tu Z; Wu D; Wang J; Chen Z Small; 2024 Feb; 20(8):e2306100. PubMed ID: 37817367 [TBL] [Abstract][Full Text] [Related]
17. Bifunctional nanoporous Ni-Zn electrocatalysts with super-aerophobic surface for high-performance hydrazine-assisted hydrogen production. Zhang H; Feng Z; Wang L; Li D; Xing P Nanotechnology; 2020 Sep; 31(36):365701. PubMed ID: 32413873 [TBL] [Abstract][Full Text] [Related]
18. Partial oxidation of Rh/Ru nanoparticles within carbon nanofibers for high-efficiency hydrazine oxidation-assisted hydrogen generation. Xu J; Zhong M; Yan S; Chen X; Li W; Xu M; Wang C; Lu X J Colloid Interface Sci; 2025 Feb; 679(Pt A):171-180. PubMed ID: 39362142 [TBL] [Abstract][Full Text] [Related]
19. Construction of Nitrogen-Doped Biphasic Transition-Metal Sulfide Nanosheet Electrode for Energy-Efficient Hydrogen Production via Urea Electrolysis. Xie H; Feng Y; He X; Zhu Y; Li Z; Liu H; Zeng S; Qian Q; Zhang G Small; 2023 Apr; 19(17):e2207425. PubMed ID: 36703521 [TBL] [Abstract][Full Text] [Related]
20. Bifunctional single-atomic Mn sites for energy-efficient hydrogen production. Peng X; Hou J; Mi Y; Sun J; Qi G; Qin Y; Zhang S; Qiu Y; Luo J; Liu X Nanoscale; 2021 Mar; 13(9):4767-4773. PubMed ID: 33650623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]