These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33306464)

  • 1. Effect of the Acoustic Impedance Mismatch at the Bone-Soft Tissue Interface as a Function of Frequency in Transcranial Ultrasound: A Simulation and In Vitro Experimental Study.
    Gupta S; Haiat G; Laporte C; Belanger P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1653-1663. PubMed ID: 33306464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls.
    Pichardo S; Sin VW; Hynynen K
    Phys Med Biol; 2011 Jan; 56(1):219-50. PubMed ID: 21149950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Ultrasound Transmission through Skull Using Flexible Matching Layer with Gradual Acoustic Impedance.
    Chen T; Chen J; Yi Z; Zheng C; Zhou L; Wu Y; Cai F; Qin J; Hong Z; Huang Y
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55510-55517. PubMed ID: 37991837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A numerical study of transcranial focused ultrasound beam propagation at low frequency.
    Yin X; Hynynen K
    Phys Med Biol; 2005 Apr; 50(8):1821-36. PubMed ID: 15815098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Longitudinal and shear mode ultrasound propagation in human skull bone.
    White PJ; Clement GT; Hynynen K
    Ultrasound Med Biol; 2006 Jul; 32(7):1085-96. PubMed ID: 16829322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical analysis of ultrasonic transmission and absorption of oblique plane waves through the human skull.
    Hayner M; Hynynen K
    J Acoust Soc Am; 2001 Dec; 110(6):3319-30. PubMed ID: 11785832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcranial Ultrasonic Focusing by a Phased Array Based on Micro-CT Images.
    Yin Y; Yan S; Huang J; Zhang B
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-layer model with absorption for conservative estimation of the maximum acoustic transmission coefficient through the human skull for transcranial ultrasound stimulation.
    Attali D; Tiennot T; Schafer M; Fouragnan E; Sallet J; Caskey CF; Chen R; Darmani G; Bubrick EJ; Butler C; Stagg CJ; Klein-Flügge M; Verhagen L; Yoo SS; Pauly KB; Aubry JF
    Brain Stimul; 2023; 16(1):48-55. PubMed ID: 36549480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcranial ultrasound focus reconstruction with phase and amplitude correction.
    White J; Clement GT; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Sep; 52(9):1518-22. PubMed ID: 16285450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementary Acoustic Metamaterial for Penetrating Aberration Layers.
    Li L; Diao Y; Wu H; Jiang W
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28604-28614. PubMed ID: 35726703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refraction-Corrected Transcranial Ultrasound Imaging Through the Human Temporal Window Using a Single Probe.
    Mozaffarzadeh M; Verschuur E; Verweij MD; Daeichin V; De Jong N; Renaud G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1191-1203. PubMed ID: 35100111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nonlinear ultrasound propagation on high intensity brain therapy.
    Pinton G; Aubry JF; Fink M; Tanter M
    Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical note: High-efficient and wireless transcranial ultrasound excitation based on electromagnetic acoustic transducer.
    Huang L; Qiao S; Ling W; Wang W; Feng Q; Cao J; Luo Y
    Med Phys; 2024 Jan; 51(1):662-669. PubMed ID: 37815210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of ultrasound propagation through ex-vivo human temporal bone.
    Ammi AY; Mast TD; Huang IH; Abruzzo TA; Coussios CC; Shaw GJ; Holland CK
    Ultrasound Med Biol; 2008 Oct; 34(10):1578-89. PubMed ID: 18456391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband acoustic properties of a murine skull.
    Estrada H; Rebling J; Turner J; Razansky D
    Phys Med Biol; 2016 Mar; 61(5):1932-46. PubMed ID: 26878583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational modeling of a single-element transcranial focused ultrasound transducer for subthalamic nucleus stimulation.
    Samoudi MA; Van Renterghem T; Botteldooren D
    J Neural Eng; 2019 Apr; 16(2):026015. PubMed ID: 30572313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of image homogenisation on simulated transcranial ultrasound propagation.
    Robertson J; Urban J; Stitzel J; Treeby BE
    Phys Med Biol; 2018 Jul; 63(14):145014. PubMed ID: 29897047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation study on the effects of cancellous bone structure in the skull on ultrasonic wave propagation.
    Michimoto I; Miyashita K; Suzuyama H; Yano K; Kobayashi Y; Saito K; Matsukawa M
    Sci Rep; 2021 Sep; 11(1):17592. PubMed ID: 34475422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of bone model geometries on the determination of skull acoustic properties.
    Marchant JK; Clinard SR; Odéen H; Parker DL; Christensen DA
    Int J Numer Method Biomed Eng; 2023 Dec; 39(12):e3779. PubMed ID: 37794748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method to optimize the placement of a single-element transducer for transcranial focused ultrasound.
    Park TY; Pahk KJ; Kim H
    Comput Methods Programs Biomed; 2019 Oct; 179():104982. PubMed ID: 31443869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.