These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 33306745)
21. Compared to antioxidants and polyamines, the role of maize grain-derived organic biostimulants in improving cadmium tolerance in wheat plants. Alzahrani Y; Rady MM Ecotoxicol Environ Saf; 2019 Oct; 182():109378. PubMed ID: 31254855 [TBL] [Abstract][Full Text] [Related]
22. Effect of nicosulfuron on dynamic changes in the starch-sugar interconversion in sweet maize (Zea mays L.). Wang J; Yang Q; Han J; He Z; Yang M; Wang X; Lin X Environ Sci Pollut Res Int; 2023 May; 30(21):59606-59620. PubMed ID: 37010681 [TBL] [Abstract][Full Text] [Related]
23. Foliar spray of TiO Lian J; Zhao L; Wu J; Xiong H; Bao Y; Zeb A; Tang J; Liu W Chemosphere; 2020 Jan; 239():124794. PubMed ID: 31521929 [TBL] [Abstract][Full Text] [Related]
24. Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Vaculík M; Landberg T; Greger M; Luxová M; Stoláriková M; Lux A Ann Bot; 2012 Jul; 110(2):433-43. PubMed ID: 22455991 [TBL] [Abstract][Full Text] [Related]
25. The Ameliorative Effect of Silicon on Maize Plants Grown in Mg-Deficient Conditions. Hosseini SA; Naseri Rad S; Ali N; Yvin JC Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30813370 [TBL] [Abstract][Full Text] [Related]
26. Silymarin-Enriched Biostimulant Foliar Application Minimizes the Toxicity of Cadmium in Maize by Suppressing Oxidative Stress and Elevating Antioxidant Gene Expression. Alharby HF; Al-Zahrani HS; Hakeem KR; Alsamadany H; Desoky EM; Rady MM Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33801090 [TBL] [Abstract][Full Text] [Related]
27. Physiological stress responses, mineral element uptake and phytoremediation potential of Morus alba L. in cadmium-contaminated soil. Zeng P; Guo Z; Xiao X; Peng C; Liu L; Yan D; He Y Ecotoxicol Environ Saf; 2020 Feb; 189():109973. PubMed ID: 31761549 [TBL] [Abstract][Full Text] [Related]
28. Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. Chou TS; Chao YY; Huang WD; Hong CY; Kao CH J Plant Physiol; 2011 Jul; 168(10):1021-30. PubMed ID: 21216027 [TBL] [Abstract][Full Text] [Related]
29. Genotypic variation for cadmium tolerance in common bean (Phaseolus vulgaris L.). Bahmani R; Modareszadeh M; Bihamta MR Ecotoxicol Environ Saf; 2020 Mar; 190():110178. PubMed ID: 31927193 [TBL] [Abstract][Full Text] [Related]
30. Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Khanna K; Jamwal VL; Gandhi SG; Ohri P; Bhardwaj R Sci Rep; 2019 Apr; 9(1):5855. PubMed ID: 30971817 [TBL] [Abstract][Full Text] [Related]
31. Zinc deficiency tolerance in maize is associated with the up-regulation of Zn transporter genes and antioxidant activities. Khatun MA; Hossain MM; Bari MA; Abdullahil KM; Parvez MS; Alam MF; Kabir AH Plant Biol (Stuttg); 2018 Jul; 20(4):765-770. PubMed ID: 29718561 [TBL] [Abstract][Full Text] [Related]
32. Characterization of cadmium-responsive MicroRNAs and their target genes in maize (Zea mays) roots. Gao J; Luo M; Peng H; Chen F; Li W BMC Mol Biol; 2019 May; 20(1):14. PubMed ID: 31046674 [TBL] [Abstract][Full Text] [Related]
33. Sucrose phosphate synthase (SPS), sucrose synthase (SUS) and their products in the leaves of Miscanthus × giganteus and Zea mays at low temperature. Bilska-Kos A; Mytych J; Suski S; Magoń J; Ochodzki P; Zebrowski J Planta; 2020 Jul; 252(2):23. PubMed ID: 32676847 [TBL] [Abstract][Full Text] [Related]
34. Differential Role for Trehalose Metabolism in Salt-Stressed Maize. Henry C; Bledsoe SW; Griffiths CA; Kollman A; Paul MJ; Sakr S; Lagrimini LM Plant Physiol; 2015 Oct; 169(2):1072-89. PubMed ID: 26269545 [TBL] [Abstract][Full Text] [Related]
35. Physiological investigation of C Zhang C; Li X; He Y; Zhang J; Yan T; Liu X Plant Physiol Biochem; 2017 Jun; 115():328-342. PubMed ID: 28415033 [TBL] [Abstract][Full Text] [Related]
36. Growth parameters and photosynthetic pigments in leaf segments of Zea mays exposed to cadmium, as related to protection mechanisms. Drazkiewicz M; Baszyński T J Plant Physiol; 2005 Sep; 162(9):1013-21. PubMed ID: 16173462 [TBL] [Abstract][Full Text] [Related]
38. Effect of elevated CO2 concentration on photosynthetic characteristics of hyperaccumulator Sedum alfredii under cadmium stress. Li T; Tao Q; Di Z; Lu F; Yang X J Integr Plant Biol; 2015 Jul; 57(7):653-60. PubMed ID: 25370532 [TBL] [Abstract][Full Text] [Related]
39. Effects of a dark septate endophyte (DSE) on growth, cadmium content, and physiology in maize under cadmium stress. He Y; Yang Z; Li M; Jiang M; Zhan F; Zu Y; Li T; Zhao Z Environ Sci Pollut Res Int; 2017 Aug; 24(22):18494-18504. PubMed ID: 28646310 [TBL] [Abstract][Full Text] [Related]
40. Comparative profiling of roots small RNA expression and corresponding gene ontology and pathway analyses for low- and high-cadmium-accumulating genotypes of wheat in response to cadmium stress. Zhou M; Zheng S; Li Y; Liu R; Zhang L; Wu Y Funct Integr Genomics; 2020 Mar; 20(2):177-190. PubMed ID: 31435847 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]