These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33306842)

  • 1. Revisiting the effect of f-functions in predicting the right reaction mechanism for hypervalent iodine reagents.
    Sun TY; Chen K; Zhou H; You T; Yin P; Wang X
    J Comput Chem; 2021 Mar; 42(7):470-474. PubMed ID: 33306842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the right mechanism for hypervalent iodine reagents by applying two types of hypervalent twist models: apical twist and equatorial twist.
    Sun TY; Chen K; Lin Q; You T; Yin P
    Phys Chem Chem Phys; 2021 Mar; 23(11):6758-6762. PubMed ID: 33711091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relating Bond Strength and Nature to the Thermodynamic Stability of Hypervalent Togni-Type Iodine Compounds.
    Oliveira VP; Marcial BL; Machado FBC; Kraka E
    Chempluschem; 2021 Aug; 86(8):1199-1210. PubMed ID: 34437775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iodine(III) Reagents in Radical Chemistry.
    Wang X; Studer A
    Acc Chem Res; 2017 Jul; 50(7):1712-1724. PubMed ID: 28636313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Twist of the Twist Mechanism, 2-Iodoxybenzoic Acid (IBX)-Mediated Oxidation of Alcohol Revisited: Theory and Experiment.
    Jiang H; Sun TY; Wang X; Xie Y; Zhang X; Wu YD; Schaefer HF
    Org Lett; 2017 Dec; 19(24):6502-6505. PubMed ID: 29166031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of Electron-Deficient Phenols Mediated by Hypervalent Iodine(V) Reagents: Fundamental Mechanistic Features Revealed by a Density Functional Theory-Based Investigation.
    Jalali M; Bissember AC; Yates BF; Wengryniuk SE; Ariafard A
    J Org Chem; 2021 Sep; 86(17):12237-12246. PubMed ID: 34410728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why do the Togni reagent and some of its derivatives exist in the high-energy hypervalent iodine form? New insight into the origins of their kinetic stability.
    Koichi S; Leuthold B; Lüthi HP
    Phys Chem Chem Phys; 2017 Dec; 19(48):32179-32183. PubMed ID: 29186232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bond Strength and Interaction Energies in Togni Reagents: Insights from Molecular Electrostatic Potential-Based Parameters.
    Lohithakshamenon R; Prasanthkumar KP; Femina C; Sajith PK
    J Phys Chem A; 2024 Feb; 128(4):727-737. PubMed ID: 38253016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic investigation into phenol oxidation by IBX elucidated by DFT calculations.
    Kaur A; Ariafard A
    Org Biomol Chem; 2020 Feb; 18(6):1117-1129. PubMed ID: 31994575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regiospecific oxidation of polycyclic aromatic phenols to quinones by hypervalent iodine reagents.
    Wu A; Duan Y; Xu D; Penning TM; Harvey RG
    Tetrahedron; 2010 Mar; 66(12):2111-2118. PubMed ID: 24014894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic Hypervalent Iodine Reagents: Enabling Tools for Bond Disconnection via Reactivity Umpolung.
    Hari DP; Caramenti P; Waser J
    Acc Chem Res; 2018 Dec; 51(12):3212-3225. PubMed ID: 30485071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypervalent iodine-guided electrophilic substitution:
    Mowdawalla C; Ahmed F; Li T; Pham K; Dave L; Kim G; Hyatt IFD
    Beilstein J Org Chem; 2018; 14():1039-1045. PubMed ID: 29977377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypervalent Iodine-Catalyzed Fluorination of Diene-Containing Compounds: A Computational Study.
    Liu T; Li HB
    Molecules; 2024 Jun; 29(13):. PubMed ID: 38999056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct cyanation of heteroaromatic compounds mediated by hypervalent iodine(III) reagents: In situ generation of PhI(III)-CN species and their cyano transfer.
    Dohi T; Morimoto K; Takenaga N; Goto A; Maruyama A; Kiyono Y; Tohma H; Kita Y
    J Org Chem; 2007 Jan; 72(1):109-16. PubMed ID: 17194088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of N,N-Disubstituted Hydroxylamines to Nitrones with Hypervalent Iodine Reagents.
    Matassini C; Parmeggiani C; Cardona F; Goti A
    Org Lett; 2015 Aug; 17(16):4082-5. PubMed ID: 26225452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypervalent Iodine Reagents in Palladium-Catalyzed Oxidative Cross-Coupling Reactions.
    Shetgaonkar SE; Singh FV
    Front Chem; 2020; 8():705. PubMed ID: 33134246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge-Transfer-Induced para-Selective sp
    Zhao J; Li S
    J Org Chem; 2017 Mar; 82(6):2984-2991. PubMed ID: 28225619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The solvent effect on two competing reaction mechanisms involving hypervalent iodine reagents (λ(3)-iodanes): facing the limit of the stationary quantum chemical approach.
    Sala O; Lüthi HP; Togni A
    J Comput Chem; 2014 Nov; 35(29):2122-31. PubMed ID: 25220398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When nucleoside chemistry met hypervalent iodine reagents.
    Lakshman MK; Zajc B
    ARKIVOC; 2018; 2018(Pt II):252-279. PubMed ID: 30221252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of Formation and Rearrangement of Benziodoxole-Based CF
    Brea O; Szabo KJ; Himo F
    J Org Chem; 2020 Dec; 85(23):15577-15585. PubMed ID: 33201704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.