These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 33307495)
1. A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability. Muys M; Phukan R; Brader G; Samad A; Moretti M; Haiden B; Pluchon S; Roest K; Vlaeminck SE; Spiller M Sci Total Environ; 2021 Feb; 756():143726. PubMed ID: 33307495 [TBL] [Abstract][Full Text] [Related]
2. Optimization of struvite fertilizer formation from baker's yeast wastewater: growth and nutrition of maize and tomato plants. Uysal A; Demir S; Sayilgan E; Eraslan F; Kucukyumuk Z Environ Sci Pollut Res Int; 2014 Mar; 21(5):3264-74. PubMed ID: 24217971 [TBL] [Abstract][Full Text] [Related]
3. Greenhouse evaluation and environmental impact assessment of different urine-derived struvite fertilizers as phosphorus sources for plants. Antonini S; Arias MA; Eichert T; Clemens J Chemosphere; 2012 Nov; 89(10):1202-10. PubMed ID: 22901433 [TBL] [Abstract][Full Text] [Related]
4. An economic evaluation of phosphorus recovery as struvite from digester supernatant. Shu L; Schneider P; Jegatheesan V; Johnson J Bioresour Technol; 2006 Nov; 97(17):2211-6. PubMed ID: 16364632 [TBL] [Abstract][Full Text] [Related]
5. Predicting the potential of sludge dewatering liquors to recover nutrients as struvite biominerals. Simoes F; Colston R; Rosa-Fernandes C; Vale P; Stephenson T; Soares A Environ Sci Ecotechnol; 2020 Jul; 3():100052. PubMed ID: 36159601 [TBL] [Abstract][Full Text] [Related]
6. Low-cost struvite production using source-separated urine in Nepal. Etter B; Tilley E; Khadka R; Udert KM Water Res; 2011 Jan; 45(2):852-62. PubMed ID: 20980038 [TBL] [Abstract][Full Text] [Related]
7. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Münch EV; Barr K Water Res; 2001 Jan; 35(1):151-9. PubMed ID: 11257869 [TBL] [Abstract][Full Text] [Related]
8. Macroscopic and microscopic variation in recovered magnesium phosphate materials: implications for phosphorus removal processes and product re-use. Massey MS; Ippolito JA; Davis JG; Sheffield RE Bioresour Technol; 2010 Feb; 101(3):877-85. PubMed ID: 19793651 [TBL] [Abstract][Full Text] [Related]
9. Releasing phosphorus from calcium for struvite fertilizer production from anaerobically digested dairy effluent. Zhang T; Bowers KE; Harrison JH; Chen S Water Environ Res; 2010 Jan; 82(1):34-42. PubMed ID: 20112536 [TBL] [Abstract][Full Text] [Related]
10. Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: Uncovering alternative options to sustain global food security cost-effectively. Sniatala B; Kurniawan TA; Sobotka D; Makinia J; Othman MHD Sci Total Environ; 2023 Jan; 856(Pt 2):159283. PubMed ID: 36208738 [TBL] [Abstract][Full Text] [Related]
11. Prevention of struvite scaling in digesters combined with phosphorus removal and recovery--the FIX-Phos process. Petzet S; Cornel P Water Environ Res; 2012 Mar; 84(3):220-6. PubMed ID: 22755489 [TBL] [Abstract][Full Text] [Related]
12. Understanding the growth of the bio-struvite production Brevibacterium antiquum in sludge liquors. Simoes F; Vale P; Stephenson T; Soares A Environ Technol; 2018 Sep; 39(17):2278-2287. PubMed ID: 29187072 [TBL] [Abstract][Full Text] [Related]
13. Phosphorus recovery from high solid content liquid fraction of digestate using seawater bittern as the magnesium source. Pepè Sciarria T; Zangarini S; Tambone F; Trombino L; Puig S; Adani F Waste Manag; 2023 Jan; 155():252-259. PubMed ID: 36399852 [TBL] [Abstract][Full Text] [Related]
14. Screening plant growth effects of sheep slaughterhouse waste-derived soil amendments in greenhouse trials. Yetilmezsoy K; Kıyan E; Ilhan F; Özçimen D; Koçer AT J Environ Manage; 2022 Sep; 318():115586. PubMed ID: 35753126 [TBL] [Abstract][Full Text] [Related]
15. Energy and phosphorus recovery from black water. de Graaff MS; Temmink H; Zeeman G; Buisman CJ Water Sci Technol; 2011; 63(11):2759-65. PubMed ID: 22049776 [TBL] [Abstract][Full Text] [Related]
16. Characteristics of vegetable crop cultivation and nutrient releasing with struvite as a slow-release fertilizer. Min KJ; Kim D; Lee J; Lee K; Park KY Environ Sci Pollut Res Int; 2019 Nov; 26(33):34332-34344. PubMed ID: 31175569 [TBL] [Abstract][Full Text] [Related]
17. Potential phosphorus recovery by struvite formation. Jaffer Y; Clark TA; Pearce P; Parsons SA Water Res; 2002 Apr; 36(7):1834-42. PubMed ID: 12044083 [TBL] [Abstract][Full Text] [Related]
18. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor. Rahaman MS; Mavinic DS; Meikleham A; Ellis N Water Res; 2014 Mar; 51():1-10. PubMed ID: 24384559 [TBL] [Abstract][Full Text] [Related]
19. Fertilizer demand and potential supply through nutrient recovery from organic waste digestate in California. Orner KD; Smith SJ; Breunig HM; Scown CD; Nelson KL Water Res; 2021 Nov; 206():117717. PubMed ID: 34634641 [TBL] [Abstract][Full Text] [Related]
20. Enhancing chemical phosphorus precipitation from tapioca starch anaerobic digestion effluent in a modified pilot-scale fluidized bed reactor. Riewklang K; Polprasert C; Nakason K; Polprasert S; Kwonpongsagoon S; Mahasandana S; Panyapinyopol B Environ Res; 2023 Aug; 231(Pt 3):116277. PubMed ID: 37263468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]