These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 33307874)

  • 21. RNAi: a novel antisense technology and its therapeutic potential.
    Dallas A; Vlassov AV
    Med Sci Monit; 2006 Apr; 12(4):RA67-74. PubMed ID: 16572063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Primer extension-based method for the generation of a siRNA/miRNA expression vector.
    Gou D; Zhang H; Baviskar PS; Liu L
    Physiol Genomics; 2007 Nov; 31(3):554-62. PubMed ID: 17804605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54.
    Chu CY; Rana TM
    PLoS Biol; 2006 Jul; 4(7):e210. PubMed ID: 16756390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expressing functional siRNAs in mammalian cells using convergent transcription.
    Tran N; Cairns MJ; Dawes IW; Arndt GM
    BMC Biotechnol; 2003 Nov; 3():21. PubMed ID: 14604435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Future promise of siRNA and other nucleic acid based therapeutics for the treatment of chronic HCV.
    Wilson JA; Richardson CD
    Infect Disord Drug Targets; 2006 Mar; 6(1):43-56. PubMed ID: 16787303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silencing strategies for therapy of SOD1-mediated ALS.
    van Zundert B; Brown RH
    Neurosci Lett; 2017 Jan; 636():32-39. PubMed ID: 27507699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prospects for the potential of RNA interference in the treatment of autoimmune diseases: Small interfering RNAs in the spotlight.
    Gorabi AM; Kiaie N; Aslani S; Jamialahmadi T; Johnston TP; Sahebkar A
    J Autoimmun; 2020 Nov; 114():102529. PubMed ID: 32782117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HMGB1 siRNA can reduce damage to retinal cells induced by high glucose in vitro and in vivo.
    Jiang S; Chen X
    Drug Des Devel Ther; 2017; 11():783-795. PubMed ID: 28352154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noncoding RNA for Cancer Gene Therapy.
    Zhong X; Zhang D; Xiong M; Zhang L
    Recent Results Cancer Res; 2016; 209():51-60. PubMed ID: 28101687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recognition of c9orf72 Mutant RNA by Single-Stranded Silencing RNAs.
    Hu J; Rigo F; Prakash TP; Corey DR
    Nucleic Acid Ther; 2017 Apr; 27(2):87-94. PubMed ID: 28005462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins.
    Boden D; Pusch O; Silbermann R; Lee F; Tucker L; Ramratnam B
    Nucleic Acids Res; 2004; 32(3):1154-8. PubMed ID: 14966264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional microRNA targetome undergoes degeneration-induced shift in the retina.
    Chu-Tan JA; Cioanca AV; Feng ZP; Wooff Y; Schumann U; Aggio-Bruce R; Patel H; Rutar M; Hannan K; Panov K; Provis J; Natoli R
    Mol Neurodegener; 2021 Aug; 16(1):60. PubMed ID: 34465369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The infinite possibilities of RNA therapeutics.
    Mollocana-Lara EC; Ni M; Agathos SN; Gonzales-Zubiate FA
    J Ind Microbiol Biotechnol; 2021 Dec; 48(9-10):. PubMed ID: 34463324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA interference: from gene silencing to gene-specific therapeutics.
    Leung RK; Whittaker PA
    Pharmacol Ther; 2005 Aug; 107(2):222-39. PubMed ID: 15908010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of stable 3'-mRNA cleavage fragments induced by siRNA in cells with high-levels of duck hepatitis B virus replication.
    Lan L; Mao Q; Blum HE
    Biochem Biophys Res Commun; 2014 Jan; 443(3):834-9. PubMed ID: 24342609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vectors and methods for hairpin RNA and artificial microRNA-mediated gene silencing in plants.
    Eamens AL; Waterhouse PM
    Methods Mol Biol; 2011; 701():179-97. PubMed ID: 21181531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting.
    De Paula D; Bentley MV; Mahato RI
    RNA; 2007 Apr; 13(4):431-56. PubMed ID: 17329355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry.
    Wang P; Zhou Y; Richards AM
    Theranostics; 2021; 11(18):8771-8796. PubMed ID: 34522211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA therapeutics: RNAi and antisense mechanisms and clinical applications.
    Chery J
    Postdoc J; 2016 Jul; 4(7):35-50. PubMed ID: 27570789
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A perspective on RNA interference-based therapeutics for metabolic liver diseases.
    Alkhouri N; Gawrieh S
    Expert Opin Investig Drugs; 2021 Mar; 30(3):237-244. PubMed ID: 33470860
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.