BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33308111)

  • 1. Histone Deacetylase Inhibitors and Papillary Thyroid Cancer.
    Spartalis E; Kotrotsios K; Chrysikos D; Spartalis M; Paschou SA; Schizas D; Tsamakis K; Dimitroulis D; Troupis T; Nikiteas N
    Curr Pharm Des; 2021; 27(18):2199-2208. PubMed ID: 33308111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone Deacetylase Inhibitors and Anaplastic Thyroid Carcinoma.
    Spartalis E; Athanasiadis DI; Chrysikos D; Spartalis M; Boutzios G; Schizas D; Garmpis N; Damaskos C; Paschou SA; Ioannidis A; Tsourouflis G; Dimitroulis D; Nikiteas NI
    Anticancer Res; 2019 Mar; 39(3):1119-1127. PubMed ID: 30842140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential anti-cancer effect of N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA), a novel histone deacetylase inhibitor, for the treatment of thyroid cancer.
    Kim SM; Park KC; Jeon JY; Kim BW; Kim HK; Chang HJ; Choi SH; Park CS; Chang HS
    BMC Cancer; 2015 Dec; 15():1003. PubMed ID: 26698299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Belinostat and panobinostat (HDACI): in vitro and in vivo studies in thyroid cancer.
    Chan D; Zheng Y; Tyner JW; Chng WJ; Chien WW; Gery S; Leong G; Braunstein GD; Koeffler HP
    J Cancer Res Clin Oncol; 2013 Sep; 139(9):1507-14. PubMed ID: 23824064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone Deacetylase Inhibitors: A Novel Therapeutic Weapon Against Medullary Thyroid Cancer?
    Damaskos C; Garmpis N; Valsami S; Spartalis E; Antoniou EA; Tomos P; Karamaroudis S; Zoumpou T; Pergialiotis V; Stergios K; Michaelides C; Kontzoglou K; Perrea D; Nikiteas N; Dimitroulis D
    Anticancer Res; 2016 Oct; 36(10):5019-5024. PubMed ID: 27798860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone Deacetylase Inhibitors Dose-Dependently Switch Neutrophil Death from NETosis to Apoptosis.
    Hamam HJ; Palaniyar N
    Biomolecules; 2019 May; 9(5):. PubMed ID: 31083537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress in Histone Deacetylase Inhibitors as Anticancer Agents.
    Cappellacci L; Perinelli DR; Maggi F; Grifantini M; Petrelli R
    Curr Med Chem; 2020; 27(15):2449-2493. PubMed ID: 30332940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The histone deacetylase inhibitor panobinostat exerts anticancer effects on esophageal squamous cell carcinoma cells by inducing cell cycle arrest.
    Cheng YW; Liao LD; Yang Q; Chen Y; Nie PJ; Zhang XJ; Xie JJ; Shan BE; Zhao LM; Xu LY; Li EM
    Cell Biochem Funct; 2018 Dec; 36(8):398-407. PubMed ID: 30484863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells.
    Takai N; Desmond JC; Kumagai T; Gui D; Said JW; Whittaker S; Miyakawa I; Koeffler HP
    Clin Cancer Res; 2004 Feb; 10(3):1141-9. PubMed ID: 14871994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacogenomics and histone deacetylase inhibitors.
    Goey AK; Sissung TM; Peer CJ; Figg WD
    Pharmacogenomics; 2016 Nov; 17(16):1807-1815. PubMed ID: 27767376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Downregulation of Nrf2 by the combination of TRAIL and Valproic acid induces apoptotic cell death of TRAIL-resistant papillary thyroid cancer cells via suppression of Bcl-xL.
    Cha HY; Lee BS; Chang JW; Park JK; Han JH; Kim YS; Shin YS; Byeon HK; Kim CH
    Cancer Lett; 2016 Mar; 372(1):65-74. PubMed ID: 26721202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of matrix metalloproteinase activity in human thyroid cancer cell lines using demethylating agents and histone deacetylase inhibitors.
    Mitmaker EJ; Griff NJ; Grogan RH; Sarkar R; Kebebew E; Duh QY; Clark OH; Shen WT
    Surgery; 2011 Apr; 149(4):504-11. PubMed ID: 21193210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone deacetylase inhibitors are potent inducers of gene expression in latent EBV and sensitize lymphoma cells to nucleoside antiviral agents.
    Ghosh SK; Perrine SP; Williams RM; Faller DV
    Blood; 2012 Jan; 119(4):1008-17. PubMed ID: 22160379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Notch1 mediates growth suppression of papillary and follicular thyroid cancer cells by histone deacetylase inhibitors.
    Xiao X; Ning L; Chen H
    Mol Cancer Ther; 2009 Feb; 8(2):350-6. PubMed ID: 19190121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Panobinostat, a pan-histone deacetylase inhibitor: rationale for and application to treatment of multiple myeloma.
    Cheng T; Grasse L; Shah J; Chandra J
    Drugs Today (Barc); 2015 Aug; 51(8):491-504. PubMed ID: 26380387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of class IIa histone deacetylase activity by gallic acid, sulforaphane, TMP269, and panobinostat.
    Choi SY; Kee HJ; Jin L; Ryu Y; Sun S; Kim GR; Jeong MH
    Biomed Pharmacother; 2018 May; 101():145-154. PubMed ID: 29482060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HTP Nutraceutical Screening for Histone Deacetylase Inhibitors and Effects of HDACis on Tumor-suppressing miRNAs by Trichostatin A and Grapeseed (Vitis vinifera) in HeLa cells.
    Mazzio EA; Soliman KF
    Cancer Genomics Proteomics; 2017 Jan; 14(1):17-33. PubMed ID: 28031235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitors of histone deacetylase as antitumor agents: A critical review.
    Manal M; Chandrasekar MJ; Gomathi Priya J; Nanjan MJ
    Bioorg Chem; 2016 Aug; 67():18-42. PubMed ID: 27239721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Romidepsin (FK228), A Histone Deacetylase Inhibitor and its Analogues in Cancer Chemotherapy.
    Pojani E; Barlocco D
    Curr Med Chem; 2021; 28(7):1290-1303. PubMed ID: 32013816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone deacetylase inhibitors as a new anticancer option: How far can we go with expectations? delivery systems.
    Garmpi A; Garmpis N; Damaskos C; Valsami S; Spartalis E; Lavaris A; Patelis N; Margonis GA; Apostolou KG; Spartalis M; Andreatos N; Diamantis E; Tsivelekas K; Moschos MM; Nonni A; Tsourouflis G; Markatos K; Antoniou EA; Kontzoglou K; Nikiteas N; Dimitroulis D
    J BUON; 2018; 23(4):846-861. PubMed ID: 30358185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.