These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33308115)

  • 1. Trypanothione Metabolism as Drug Target for Trypanosomatids.
    Piñeyro MD; Arias D; Parodi-Talice A; Guerrero S; Robello C
    Curr Pharm Des; 2021; 27(15):1834-1846. PubMed ID: 33308115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Trypanothione Metabolism in Trypanosomatids.
    González-Montero MC; Andrés-Rodríguez J; García-Fernández N; Pérez-Pertejo Y; Reguera RM; Balaña-Fouce R; García-Estrada C
    Molecules; 2024 May; 29(10):. PubMed ID: 38792079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The parasite-specific trypanothione metabolism of trypanosoma and leishmania.
    Krauth-Siegel RL; Meiering SK; Schmidt H
    Biol Chem; 2003 Apr; 384(4):539-49. PubMed ID: 12751784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advancement in the Search of Innovative Antiprotozoal Agents Targeting Trypanothione Metabolism.
    Saccoliti F; Di Santo R; Costi R
    ChemMedChem; 2020 Dec; 15(24):2420-2435. PubMed ID: 32805075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The trypanothione system and the opportunities it offers to create drugs for the neglected kinetoplast diseases.
    Flohé L
    Biotechnol Adv; 2012; 30(1):294-301. PubMed ID: 21620942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism.
    Krauth-Siegel RL; Comini MA
    Biochim Biophys Acta; 2008 Nov; 1780(11):1236-48. PubMed ID: 18395526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiol redox biology of trypanosomatids and potential targets for chemotherapy.
    Leroux AE; Krauth-Siegel RL
    Mol Biochem Parasitol; 2016; 206(1-2):67-74. PubMed ID: 26592324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development.
    Schmidt A; Krauth-Siegel RL
    Curr Top Med Chem; 2002 Nov; 2(11):1239-59. PubMed ID: 12171583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique thiol metabolism in trypanosomatids: Redox homeostasis and drug resistance.
    Ali V; Behera S; Nawaz A; Equbal A; Pandey K
    Adv Parasitol; 2022; 117():75-155. PubMed ID: 35878950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyamine-trypanothione pathway: an update.
    Ilari A; Fiorillo A; Genovese I; Colotti G
    Future Med Chem; 2017 Jan; 9(1):61-77. PubMed ID: 27957878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas' disease, and leishmaniasis.
    Heby O; Persson L; Rentala M
    Amino Acids; 2007 Aug; 33(2):359-66. PubMed ID: 17610127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The trypanothione system and its implications in the therapy of trypanosomatid diseases.
    Flohé L
    Int J Med Microbiol; 2012 Oct; 302(4-5):216-20. PubMed ID: 22889611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and chemical analyses reveal that trypanothione synthetase but not glutathionylspermidine synthetase is essential for Leishmania infantum.
    Sousa AF; Gomes-Alves AG; Benítez D; Comini MA; Flohé L; Jaeger T; Passos J; Stuhlmann F; Tomás AM; Castro H
    Free Radic Biol Med; 2014 Aug; 73():229-38. PubMed ID: 24853758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification.
    Irigoín F; Cibils L; Comini MA; Wilkinson SR; Flohé L; Radi R
    Free Radic Biol Med; 2008 Sep; 45(6):733-42. PubMed ID: 18588970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-guided approach to identify a novel class of anti-leishmaniasis diaryl sulfide compounds targeting the trypanothione metabolism.
    Colotti G; Saccoliti F; Gramiccia M; Di Muccio T; Prakash J; Yadav S; Dubey VK; Vistoli G; Battista T; Mocci S; Fiorillo A; Bibi A; Madia VN; Messore A; Costi R; Di Santo R; Ilari A
    Amino Acids; 2020 Feb; 52(2):247-259. PubMed ID: 31037461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting trypanothione metabolism in trypanosomatid human parasites.
    Olin-Sandoval V; Moreno-Sánchez R; Saavedra E
    Curr Drug Targets; 2010 Dec; 11(12):1614-30. PubMed ID: 20735352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol-based redox metabolism of protozoan parasites.
    Müller S; Liebau E; Walter RD; Krauth-Siegel RL
    Trends Parasitol; 2003 Jul; 19(7):320-8. PubMed ID: 12855383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes.
    Ebersoll S; Bogacz M; Günter LM; Dick TP; Krauth-Siegel RL
    Elife; 2020 Jan; 9():. PubMed ID: 32003744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The trypanothione system.
    Krauth-Siegel LR; Comini MA; Schlecker T
    Subcell Biochem; 2007; 44():231-51. PubMed ID: 18084897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trypanothione efficiently intercepts nitric oxide as a harmless iron complex in trypanosomatid parasites.
    Bocedi A; Dawood KF; Fabrini R; Federici G; Gradoni L; Pedersen JZ; Ricci G
    FASEB J; 2010 Apr; 24(4):1035-42. PubMed ID: 19952282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.