These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33308849)

  • 1. Impact of carbon pores size on ionic liquid based-supercapacitor performance.
    Suárez L; Barranco V; Centeno TA
    J Colloid Interface Sci; 2021 Apr; 588():705-712. PubMed ID: 33308849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ; Chung H; Han CH; Kim W
    Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.
    Huang J; Sumpter BG; Meunier V
    Chemistry; 2008; 14(22):6614-26. PubMed ID: 18576455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation between the ion size and pore size for an electric double-layer capacitor.
    Largeot C; Portet C; Chmiola J; Taberna PL; Gogotsi Y; Simon P
    J Am Chem Soc; 2008 Mar; 130(9):2730-1. PubMed ID: 18257568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Hexagonal-Shaped Mesoporous Carbon Sheets for Supercapacitors.
    Tian Y; Zhu X; Abbas M; Tague DW; Ferraris JP; Balkus KJ
    ACS Omega; 2022 Aug; 7(32):27896-27902. PubMed ID: 35990501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen Codoped Unique Carbon with 0.4 nm Ultra-Micropores for Ultrahigh Areal Capacitance Supercapacitors.
    Zhou J; Hou L; Luan S; Zhu J; Gou H; Wang D; Gao F
    Small; 2018 Sep; 14(36):e1801897. PubMed ID: 30091511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micropore engineering of carbonized porous aromatic framework (PAF-1) for supercapacitors application.
    Li Y; Roy S; Ben T; Xu S; Qiu S
    Phys Chem Chem Phys; 2014 Jul; 16(25):12909-17. PubMed ID: 24850432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Atomistic Nature of Capacitance Enhancement Generated by Ionic Liquid Electrolyte Confined in Subnanometer Pores.
    Xing L; Vatamanu J; Borodin O; Bedrov D
    J Phys Chem Lett; 2013 Jan; 4(1):132-40. PubMed ID: 26291225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors.
    Rose M; Korenblit Y; Kockrick E; Borchardt L; Oschatz M; Kaskel S; Yushin G
    Small; 2011 Apr; 7(8):1108-17. PubMed ID: 21449047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance.
    Song M; Zhou Y; Ren X; Wan J; Du Y; Wu G; Ma F
    J Colloid Interface Sci; 2019 Feb; 535():276-286. PubMed ID: 30316114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.
    Kim TY; Lee HW; Stoller M; Dreyer DR; Bielawski CW; Ruoff RS; Suh KS
    ACS Nano; 2011 Jan; 5(1):436-42. PubMed ID: 21142183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supercapacitive Properties of Micropore- and Mesopore-Rich Activated Carbon in Ionic-Liquid Electrolytes with Various Constituent Ions.
    Nguyen QD; Patra J; Hsieh CT; Li J; Dong QF; Chang JK
    ChemSusChem; 2019 Jan; 12(2):449-456. PubMed ID: 30548119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanochemistry-assisted synthesis of hierarchical porous carbons applied as supercapacitors.
    Leistenschneider D; Jäckel N; Hippauf F; Presser V; Borchardt L
    Beilstein J Org Chem; 2017; 13():1332-1341. PubMed ID: 28781699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrolyte-Dependent Supercapacitor Performance on Nitrogen-Doped Porous Bio-Carbon from Gelatin.
    Deng J; Li J; Song S; Zhou Y; Li L
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32085553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Durable, Self-Standing Solid-State Supercapacitor Based on an Ionic Liquid-Rich Ionogel and Porous Carbon Nanofiber Electrodes.
    Simotwo SK; Chinnam PR; Wunder SL; Kalra V
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33749-33757. PubMed ID: 28929732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T; Jung G; Yoo S; Suh KS; Ruoff RS
    ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Pore Size Distribution on Energy Storage of Nanoporous Carbon Materials in Neat and Dilute Ionic Liquid Electrolytes.
    Käärik M; Arulepp M; Perkson A; Leis J
    Molecules; 2023 Oct; 28(20):. PubMed ID: 37894670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.
    Karnan M; Subramani K; Sudhan N; Ilayaraja N; Sathish M
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35191-35202. PubMed ID: 27977134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes.
    Jiang H; Ma J; Li C
    Adv Mater; 2012 Aug; 24(30):4197-202. PubMed ID: 23030034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring the Capacitance of Carbon in Ionic Liquids: From Graphite to Graphene.
    Yang J; Papaderakis AA; Roh JS; Keerthi A; Adams RW; Bissett MA; Radha B; Dryfe RAW
    J Phys Chem C Nanomater Interfaces; 2024 Mar; 128(9):3674-3684. PubMed ID: 38476828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.