These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 33309001)
1. Full-field microscale strain measurements of a nitinol medical device using digital image correlation. Aycock KI; Weaver JD; Paranjape HM; Senthilnathan K; Bonsignore C; Craven BA J Mech Behav Biomed Mater; 2021 Feb; 114():104221. PubMed ID: 33309001 [TBL] [Abstract][Full Text] [Related]
2. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices. Runciman A; Xu D; Pelton AR; Ritchie RO Biomaterials; 2011 Aug; 32(22):4987-93. PubMed ID: 21531019 [TBL] [Abstract][Full Text] [Related]
3. High compressive pre-strains reduce the bending fatigue life of nitinol wire. Gupta S; Pelton AR; Weaver JD; Gong XY; Nagaraja S J Mech Behav Biomed Mater; 2015 Apr; 44():96-108. PubMed ID: 25625888 [TBL] [Abstract][Full Text] [Related]
4. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects. Robertson SW; Ritchie RO Biomaterials; 2007 Feb; 28(4):700-9. PubMed ID: 17034845 [TBL] [Abstract][Full Text] [Related]
5. A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing. Robertson SW; Launey M; Shelley O; Ong I; Vien L; Senthilnathan K; Saffari P; Schlegel S; Pelton AR J Mech Behav Biomed Mater; 2015 Nov; 51():119-31. PubMed ID: 26241890 [TBL] [Abstract][Full Text] [Related]
6. Digital image correlation in dental materials and related research: A review. Yoon S; Jung HJ; Knowles JC; Lee HH Dent Mater; 2021 May; 37(5):758-771. PubMed ID: 33715864 [TBL] [Abstract][Full Text] [Related]
7. Effect of deformation of a flat plate specimen under in-plane blasting loading on 2D and 3D digital image correlation measurement. Huang C; Yang L; Ding C; Lin C; Wang G; Xie H Appl Opt; 2021 Jul; 60(20):5765-5775. PubMed ID: 34263795 [TBL] [Abstract][Full Text] [Related]
8. Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material. McKelvey AL; Ritchie RO J Biomed Mater Res; 1999 Dec; 47(3):301-8. PubMed ID: 10487880 [TBL] [Abstract][Full Text] [Related]
9. 3D digital image correlation evaluation of arthrodesis implants. Shen VC; Bumgardner CH; Actis L; Ritz J; Park J; Li X Clin Biomech (Bristol); 2020 Jan; 71():29-36. PubMed ID: 31678580 [TBL] [Abstract][Full Text] [Related]
10. Repeatability of digital image correlation for measurement of surface strains in composite long bones. Väänänen SP; Amin Yavari S; Weinans H; Zadpoor AA; Jurvelin JS; Isaksson H J Biomech; 2013 Jul; 46(11):1928-32. PubMed ID: 23791085 [TBL] [Abstract][Full Text] [Related]
11. Non-contact strain measurement in the mouse forearm loading model using digital image correlation (DIC). Begonia MT; Dallas M; Vizcarra B; Liu Y; Johnson ML; Thiagarajan G Bone; 2015 Dec; 81():593-601. PubMed ID: 26388521 [TBL] [Abstract][Full Text] [Related]
12. A comparison of 2D and 3D digital image correlation for a membrane under inflation. Murienne BJ; Nguyen TD Opt Lasers Eng; 2016 Feb; 77():92-99. PubMed ID: 26543296 [TBL] [Abstract][Full Text] [Related]
13. Influence of microstructural purity on the bending fatigue behavior of VAR-melted superelastic Nitinol. Launey M; Robertson SW; Vien L; Senthilnathan K; Chintapalli P; Pelton AR J Mech Behav Biomed Mater; 2014 Jun; 34():181-6. PubMed ID: 24603214 [TBL] [Abstract][Full Text] [Related]
14. Camera array-based digital image correlation for high-resolution strain measurement. Shao X; Chen Z; Dai X; He X Rev Sci Instrum; 2018 Oct; 89(10):105110. PubMed ID: 30399961 [TBL] [Abstract][Full Text] [Related]
15. Accurate ex situ deformation measurement using an ultra-stable two-dimensional digital image correlation system. Pan B; Yu L; Wu D Appl Opt; 2014 Jul; 53(19):4216-27. PubMed ID: 25089983 [TBL] [Abstract][Full Text] [Related]
16. A novel specimen shape for measurement of linear strain fields by means of digital image correlation. Amraish N; Reisinger A; Pahr D Sci Rep; 2021 Sep; 11(1):17515. PubMed ID: 34471200 [TBL] [Abstract][Full Text] [Related]
17. Comparison of strain measurement in the mouse forearm using subject-specific finite element models, strain gaging, and digital image correlation. Begonia M; Dallas M; Johnson ML; Thiagarajan G Biomech Model Mechanobiol; 2017 Aug; 16(4):1243-1253. PubMed ID: 28204985 [TBL] [Abstract][Full Text] [Related]
18. Direct Visualization of Cross-Sectional Strain Distribution in Flexible Devices. Lee TI; Jo W; Kim W; Kim JH; Paik KW; Kim TS ACS Appl Mater Interfaces; 2019 Apr; 11(14):13416-13422. PubMed ID: 30895773 [TBL] [Abstract][Full Text] [Related]
19. Fatigue of Nitinol: The state-of-the-art and ongoing challenges. Mahtabi MJ; Shamsaei N; Mitchell MR J Mech Behav Biomed Mater; 2015 Oct; 50():228-54. PubMed ID: 26160028 [TBL] [Abstract][Full Text] [Related]
20. High-accuracy optical extensometer realized by two parallel cameras and two-dimensional digital image correlation. Zhu F; Gu J; Lu R; Bai P; Lei D; Kang X Appl Opt; 2020 Dec; 59(34):10813-10825. PubMed ID: 33361902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]