BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 33309107)

  • 1. The Ways of Actin: Why Tunneling Nanotubes Are Unique Cell Protrusions.
    Ljubojevic N; Henderson JM; Zurzolo C
    Trends Cell Biol; 2021 Feb; 31(2):130-142. PubMed ID: 33309107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes.
    Delage E; Cervantes DC; Pénard E; Schmitt C; Syan S; Disanza A; Scita G; Zurzolo C
    Sci Rep; 2016 Dec; 6():39632. PubMed ID: 28008977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peering into tunneling nanotubes-The path forward.
    Cordero Cervantes D; Zurzolo C
    EMBO J; 2021 Apr; 40(8):e105789. PubMed ID: 33646572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and Quantification of Tunneling Nanotubes Using 3D Volume View Images.
    Valappil DK; Raghavan A; Nath S
    J Vis Exp; 2022 Aug; (186):. PubMed ID: 36121261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking.
    Abounit S; Delage E; Zurzolo C
    Curr Protoc Cell Biol; 2015 Jun; 67():12.10.1-12.10.21. PubMed ID: 26061240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The growth determinants and transport properties of tunneling nanotube networks between B lymphocytes.
    Osteikoetxea-Molnár A; Szabó-Meleg E; Tóth EA; Oszvald Á; Izsépi E; Kremlitzka M; Biri B; Nyitray L; Bozó T; Németh P; Kellermayer M; Nyitrai M; Matko J
    Cell Mol Life Sci; 2016 Dec; 73(23):4531-4545. PubMed ID: 27125884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macrophages enhance 3D invasion in a breast cancer cell line by induction of tumor cell tunneling nanotubes.
    Carter KP; Hanna S; Genna A; Lewis D; Segall JE; Cox D
    Cancer Rep (Hoboken); 2019 Dec; 2(6):e1213. PubMed ID: 32467880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunneling Nanotube-Mediated Communication: A Mechanism of Intercellular Nucleic Acid Transfer.
    Driscoll J; Gondaliya P; Patel T
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Centrosome, the Newly Identified Passenger through Tunneling Nanotubes, Increases Binucleation and Proliferation Marker in Receiving Cells.
    Dubois F; Galas L; Elie N; Le Foll F; Bazille C; Bergot E; Levallet G
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunnelling nanotube formation is driven by Eps8/IRSp53-dependent linear actin polymerization.
    Henderson JM; Ljubojevic N; Belian S; Chaze T; Castaneda D; Battistella A; Giai Gianetto Q; Matondo M; Descroix S; Bassereau P; Zurzolo C
    EMBO J; 2023 Dec; 42(24):e113761. PubMed ID: 38009333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell communication by tunneling nanotubes: Implications in disease and therapeutic applications.
    Mittal R; Karhu E; Wang JS; Delgado S; Zukerman R; Mittal J; Jhaveri VM
    J Cell Physiol; 2019 Feb; 234(2):1130-1146. PubMed ID: 30206931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bridging the Gap: Virus Long-Distance Spread via Tunneling Nanotubes.
    Jansens RJJ; Tishchenko A; Favoreel HW
    J Virol; 2020 Mar; 94(8):. PubMed ID: 32024778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wiring through tunneling nanotubes--from electrical signals to organelle transfer.
    Abounit S; Zurzolo C
    J Cell Sci; 2012 Mar; 125(Pt 5):1089-98. PubMed ID: 22399801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking.
    Sáenz-de-Santa-María I; Henderson JM; Pepe A; Zurzolo C
    Curr Protoc; 2023 Nov; 3(11):e939. PubMed ID: 37994667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress-induced tunneling nanotubes support treatment adaptation in prostate cancer.
    Kretschmer A; Zhang F; Somasekharan SP; Tse C; Leachman L; Gleave A; Li B; Asmaro I; Huang T; Kotula L; Sorensen PH; Gleave ME
    Sci Rep; 2019 May; 9(1):7826. PubMed ID: 31127190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Wnt/Ca
    Vargas JY; Loria F; Wu YJ; Córdova G; Nonaka T; Bellow S; Syan S; Hasegawa M; van Woerden GM; Trollet C; Zurzolo C
    EMBO J; 2019 Dec; 38(23):e101230. PubMed ID: 31625188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor microtubes connect pancreatic cancer cells in an Arp2/3 complex-dependent manner.
    Latario CJ; Schoenfeld LW; Howarth CL; Pickrell LE; Begum F; Fischer DA; Grbovic-Huezo O; Leach SD; Sanchez Y; Smith KD; Higgs HN
    Mol Biol Cell; 2020 Jun; 31(12):1259-1272. PubMed ID: 32267199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inception Mechanisms of Tunneling Nanotubes.
    Drab M; Stopar D; Kralj-Iglič V; Iglič A
    Cells; 2019 Jun; 8(6):. PubMed ID: 31234435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic and Functional Alterations in Tunneling Nanotubes Formed by Glaucomatous Trabecular Meshwork Cells.
    Sun YY; Bradley JM; Keller KE
    Invest Ophthalmol Vis Sci; 2019 Nov; 60(14):4583-4595. PubMed ID: 31675075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunneling nanotubes: emerging view of their molecular components and formation mechanisms.
    Kimura S; Hase K; Ohno H
    Exp Cell Res; 2012 Aug; 318(14):1699-706. PubMed ID: 22652450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.