BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 33309107)

  • 41. Structural and functional analysis of tunneling nanotubes (TnTs) using gCW STED and gconfocal approaches.
    Bénard M; Schapman D; Lebon A; Monterroso B; Bellenger M; Le Foll F; Pasquier J; Vaudry H; Vaudry D; Galas L
    Biol Cell; 2015 Nov; 107(11):419-25. PubMed ID: 26094971
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells.
    Sartori-Rupp A; Cordero Cervantes D; Pepe A; Gousset K; Delage E; Corroyer-Dulmont S; Schmitt C; Krijnse-Locker J; Zurzolo C
    Nat Commun; 2019 Jan; 10(1):342. PubMed ID: 30664666
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells.
    Wang X; Gerdes HH
    Cell Death Differ; 2015 Jul; 22(7):1181-91. PubMed ID: 25571977
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibition of Tunneling Nanotube (TNT) Formation and Human T-cell Leukemia Virus Type 1 (HTLV-1) Transmission by Cytarabine.
    Omsland M; Pise-Masison C; Fujikawa D; Galli V; Fenizia C; Parks RW; Gjertsen BT; Franchini G; Andresen V
    Sci Rep; 2018 Jul; 8(1):11118. PubMed ID: 30042514
    [TBL] [Abstract][Full Text] [Related]  

  • 45.
    Jahnke R; Matthiesen S; Zaeck LM; Finke S; Knittler MR
    Microbiol Spectr; 2022 Dec; 10(6):e0281722. PubMed ID: 36219107
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Communication of Ca(2+) signals via tunneling membrane nanotubes is mediated by transmission of inositol trisphosphate through gap junctions.
    Lock JT; Parker I; Smith IF
    Cell Calcium; 2016 Oct; 60(4):266-72. PubMed ID: 27388952
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pseudorabies Virus US3-Induced Tunneling Nanotubes Contain Stabilized Microtubules, Interact with Neighboring Cells via Cadherins, and Allow Intercellular Molecular Communication.
    Jansens RJJ; Van den Broeck W; De Pelsmaeker S; Lamote JAS; Van Waesberghe C; Couck L; Favoreel HW
    J Virol; 2017 Oct; 91(19):. PubMed ID: 28747498
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemotherapy-Induced Tunneling Nanotubes Mediate Intercellular Drug Efflux in Pancreatic Cancer.
    Desir S; O'Hare P; Vogel RI; Sperduto W; Sarkari A; Dickson EL; Wong P; Nelson AC; Fong Y; Steer CJ; Subramanian S; Lou E
    Sci Rep; 2018 Jun; 8(1):9484. PubMed ID: 29930346
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes.
    Smith IF; Shuai J; Parker I
    Biophys J; 2011 Apr; 100(8):L37-9. PubMed ID: 21504718
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tunneling nanotubes: Reshaping connectivity.
    Zurzolo C
    Curr Opin Cell Biol; 2021 Aug; 71():139-147. PubMed ID: 33866130
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rho GTPases and the emerging role of tunneling nanotubes in physiology and disease.
    Zhang S; Kazanietz MG; Cooke M
    Am J Physiol Cell Physiol; 2020 Nov; 319(5):C877-C884. PubMed ID: 32845720
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tunneling Nanotubes: A New Target for Nanomedicine?
    Ottonelli I; Caraffi R; Tosi G; Vandelli MA; Duskey JT; Ruozi B
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216348
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells.
    Bukoreshtliev NV; Wang X; Hodneland E; Gurke S; Barroso JF; Gerdes HH
    FEBS Lett; 2009 May; 583(9):1481-8. PubMed ID: 19345217
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microscopic Methods for Analysis of Macrophage-Induced Tunneling Nanotubes.
    Carter KP; Segall JE; Cox D
    Methods Mol Biol; 2020; 2108():273-279. PubMed ID: 31939188
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tunneling Nanotubes: A Versatile Target for Cancer Therapy.
    Sahu P; Jena SR; Samanta L
    Curr Cancer Drug Targets; 2018; 18(6):514-521. PubMed ID: 29189162
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rab11a-Rab8a cascade regulates the formation of tunneling nanotubes through vesicle recycling.
    Zhu S; Bhat S; Syan S; Kuchitsu Y; Fukuda M; Zurzolo C
    J Cell Sci; 2018 Oct; 131(19):. PubMed ID: 30209134
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Remodeling of the Actin Network Associated with the Non-Structural Protein 1 (NS1) of West Nile Virus and Formation of NS1-Containing Tunneling Nanotubes.
    Furnon W; Fender P; Confort MP; Desloire S; Nangola S; Kitidee K; Leroux C; Ratinier M; Arnaud F; Lecollinet S; Boulanger P; Hong SS
    Viruses; 2019 Sep; 11(10):. PubMed ID: 31569658
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tunneling nanotubes: Diversity in morphology and structure.
    Austefjord MW; Gerdes HH; Wang X
    Commun Integr Biol; 2014 Jan; 7(1):e27934. PubMed ID: 24778759
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intercellular communication through contacts between continuous pseudopodial extensions in a macrophage-like cell line.
    Arrevillaga-Boni G; Hernández-Ruiz M; Castillo EC; Ortiz-Navarrete V
    Cell Commun Adhes; 2014 Aug; 21(4):213-20. PubMed ID: 24896643
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RNA transfer through tunneling nanotubes.
    Haimovich G; Dasgupta S; Gerst JE
    Biochem Soc Trans; 2021 Feb; 49(1):145-160. PubMed ID: 33367488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.