These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33309159)

  • 1. H
    Syafiie S
    ISA Trans; 2021 May; 111():24-34. PubMed ID: 33309159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PID and LQG controllers for diabetes system with internal delay: a comparison study.
    Syafiie S; AlHarbi F; Alshehri AA; Hasanain B
    Biomed Phys Eng Express; 2023 Apr; 9(3):. PubMed ID: 37054685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Simulation Study of Glucose Control Methods Designed for Use in the Intensive Care Unit Setting via a Novel Controller Scoring Metric.
    DeJournett J; DeJournett L
    J Diabetes Sci Technol; 2017 Nov; 11(6):1207-1217. PubMed ID: 28637358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of the Predictive Hypoglycemia Minimizer System to the Algorithm Aggressiveness Factor.
    Finan DA; Dassau E; Breton MD; Patek SD; McCann TW; Kovatchev BP; Doyle FJ; Levy BL; Venugopalan R
    J Diabetes Sci Technol; 2015 Jun; 10(1):104-10. PubMed ID: 26134834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bio-inspired glucose controller based on pancreatic β-cell physiology.
    Herrero P; Georgiou P; Oliver N; Johnston DG; Toumazou C
    J Diabetes Sci Technol; 2012 May; 6(3):606-16. PubMed ID: 22768892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcutaneous insulin administration by deep reinforcement learning for blood glucose level control of type-2 diabetic patients.
    Raheb MA; Niazmand VR; Eqra N; Vatankhah R
    Comput Biol Med; 2022 Sep; 148():105860. PubMed ID: 35868044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance Analysis of Fuzzy-PID Controller for Blood Glucose Regulation in Type-1 Diabetic Patients.
    Yadav J; Rani A; Singh V
    J Med Syst; 2016 Dec; 40(12):254. PubMed ID: 27714563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized type-2 fuzzy controller based on IoMT for stabilizing the glucose level in type-1 diabetic patients.
    Sayed A; Zalam BA; Elhoushy M; Nabil E
    Sci Rep; 2023 Sep; 13(1):14508. PubMed ID: 37667042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing risks in type 1 diabetes using H∞ control.
    Colmegna P; Sanchez Pena RS; Gondhalekar R; Dassau E; Doyle Iii FJ
    IEEE Trans Biomed Eng; 2014 Dec; 61(12):2939-47. PubMed ID: 25020013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood glucose controller for neonatal intensive care: virtual trials development and first clinical trials.
    Le Compte A; Chase JG; Lynn A; Hann C; Shaw G; Wong XW; Lin J
    J Diabetes Sci Technol; 2009 Sep; 3(5):1066-81. PubMed ID: 20144420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Subcutaneous Regular Insulin and Lispro Insulin in Diabetics Receiving Continuous Nutrition: A Numerical Study.
    Stull MC; Strilka RJ; Clemens MS; Armen SB
    J Diabetes Sci Technol; 2015 Jun; 10(1):137-44. PubMed ID: 26134836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model-based algorithm for blood glucose control in type I diabetic patients.
    Parker RS; Doyle FJ; Peppas NA
    IEEE Trans Biomed Eng; 1999 Feb; 46(2):148-57. PubMed ID: 9932336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of Blood Glucose for Type-1 Diabetes by Using Reinforcement Learning with Feedforward Algorithm.
    Ngo PD; Wei S; Holubová A; Muzik J; Godtliebsen F
    Comput Math Methods Med; 2018; 2018():4091497. PubMed ID: 30693047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events.
    Grosman B; Dassau E; Zisser HC; Jovanovic L; Doyle FJ
    J Diabetes Sci Technol; 2010 Jul; 4(4):961-75. PubMed ID: 20663463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switched LPV Glucose Control in Type 1 Diabetes.
    Colmegna PH; Sanchez-Pena RS; Gondhalekar R; Dassau E; Doyle FJ
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1192-1200. PubMed ID: 26452196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control-relevant models for glucose control using a priori patient characteristics.
    van Heusden K; Dassau E; Zisser HC; Seborg DE; Doyle FJ
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):1839-49. PubMed ID: 22127988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trajectory tracking nonlinear H
    Rodríguez-Arellano JA; Miranda-Colorado R; Aguilar LT; Negrete-Villanueva MA
    ISA Trans; 2023 Nov; 142():372-385. PubMed ID: 37550120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural network modeling and control of type 1 diabetes mellitus.
    El-Jabali AK
    Bioprocess Biosyst Eng; 2005 Apr; 27(2):75-9. PubMed ID: 15578231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An iterative learning strategy for the auto-tuning of the feedforward and feedback controller in type-1 diabetes.
    Fravolini ML; Fabietti PG
    Comput Methods Biomech Biomed Engin; 2014; 17(13):1464-82. PubMed ID: 23282162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An adaptive technique based blood glucose control in type-1 diabetes mellitus patients.
    Belmon AP; Auxillia J
    Int J Numer Method Biomed Eng; 2020 Aug; 36(8):e3371. PubMed ID: 32453489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.