These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33309373)

  • 21. Optimization of the different phases of the freeze-drying process of solid lipid nanoparticles using experimental designs.
    Elbrink K; Van Hees S; Holm R; Kiekens F
    Int J Pharm; 2023 Mar; 635():122717. PubMed ID: 36781084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Viability of micrococci and lactobacilli upon freezing and freeze-drying in the presence of different cryoprotectants.
    Tsvetkov T; Brankova R
    Cryobiology; 1983 Jun; 20(3):318-23. PubMed ID: 6884073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of composite cryoprotectant for freeze-drying Bifidobacterium bifidum BB01 by response surface methodology.
    Chen H; Tian M; Chen L; Cui X; Meng J; Shu G
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1559-1569. PubMed ID: 31007080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Freeze thaw: a simple approach for prediction of optimal cryoprotectant for freeze drying.
    Date PV; Samad A; Devarajan PV
    AAPS PharmSciTech; 2010 Mar; 11(1):304-13. PubMed ID: 20182826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced Stability of Vegetal Diamine Oxidase with Trehalose and Sucrose as Cryoprotectants: Mechanistic Insights.
    Megoura M; Ispas-Szabo P; Mateescu MA
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of β-galactosidase liposome model as a novel method to screen freeze-drying cryoprotectants.
    Sun X; Gao L; Wang S; Zhang Y; Liu Y; Zhang B
    World J Microbiol Biotechnol; 2013 Oct; 29(10):1907-12. PubMed ID: 23604792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of cryoprotectant formulation to enhance the viability of
    Kavak AE; Zent İ; Özdemir A; Dertli E
    Prep Biochem Biotechnol; 2024 Aug; 54(7):958-966. PubMed ID: 38344829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect.
    Toxopeus J; Koštál V; Sinclair BJ
    Proc Biol Sci; 2019 Mar; 286(1899):20190050. PubMed ID: 30890098
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved viability of Lactobacillus plantarum embedded in whey protein concentrate/pullulan/trehalose hydrogel during freeze drying.
    Sun H; Zhang M; Liu Y; Wang Y; Chen Y; Guan W; Li X; Wang Y
    Carbohydr Polym; 2021 May; 260():117843. PubMed ID: 33712117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Freeze drying of polyelectrolyte complex nanoparticles: Effect of nanoparticle composition and cryoprotectant selection.
    Umerska A; Paluch KJ; Santos-Martinez MJ; Corrigan OI; Medina C; Tajber L
    Int J Pharm; 2018 Dec; 552(1-2):27-38. PubMed ID: 30236648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. C18:1 Improves the Freeze-Drying Resistance of
    Wang G; Chen P; Yu X; Xia Y; Yan LT; Ai L
    ACS Appl Bio Mater; 2020 Aug; 3(8):4933-4940. PubMed ID: 35021737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study of the probiotic potential and evaluation of the survival rate of Lactiplantibacillus plantarum lyophilized as a function of cryoprotectant.
    Yuste A; Arosemena EL; Calvo MÀ
    Sci Rep; 2021 Sep; 11(1):19078. PubMed ID: 34580384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic study of the differences in lactic acid bacteria resistance to freeze- or spray-drying and storage.
    Gagneten M; Passot S; Cenard S; Ghorbal S; Schebor C; Fonseca F
    Appl Microbiol Biotechnol; 2024 Jun; 108(1):361. PubMed ID: 38837050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of a new lyoprotectant increasing freeze-dried Lactobacillus strain survival to long-term storage.
    Bodzen A; Jossier A; Dupont S; Mousset PY; Beney L; Lafay S; Gervais P
    BMC Biotechnol; 2021 Nov; 21(1):66. PubMed ID: 34772389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of different initial pH values on freeze-drying resistance of Lactiplantibacillus plantarum LIP-1 based on transcriptomics and proteomics.
    E J; Chen J; Chen Z; Ma R; Zhang J; Yao C; Wang R; Zhang Q; Yang Y; Li J; Wang J
    Food Res Int; 2021 Nov; 149():110694. PubMed ID: 34600689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Viability of microencapsulated Akkermansia muciniphila and Lactobacillus plantarum during freeze-drying, storage and in vitro simulated upper gastrointestinal tract passage.
    Marcial-Coba MS; Cieplak T; Cahú TB; Blennow A; Knøchel S; Nielsen DS
    Food Funct; 2018 Nov; 9(11):5868-5879. PubMed ID: 30362482
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity.
    Zhang M; Oldenhof H; Sydykov B; Bigalk J; Sieme H; Wolkers WF
    Sci Rep; 2017 Jul; 7(1):6198. PubMed ID: 28740099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Some observations in freeze-drying of recombinant bioluminescent Escherichia coli for toxicity monitoring.
    Gu MB; Choi SH; Kim SW
    J Biotechnol; 2001 Jun; 88(2):95-105. PubMed ID: 11403844
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria.
    Strasser S; Neureiter M; Geppl M; Braun R; Danner H
    J Appl Microbiol; 2009 Jul; 107(1):167-77. PubMed ID: 19302330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of protectant and rehydration conditions on the survival rate and malolactic fermentation efficiency of freeze-dried Lactobacillus plantarum JH287.
    Lee SB; Kim DH; Park HD
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):7853-63. PubMed ID: 27079573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.