These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33309446)

  • 1. Effect of pyrolysis temperature on removal of organic pollutants present in anaerobically stabilized sewage sludge.
    Moško J; Pohořelý M; Cajthaml T; Jeremiáš M; Robles-Aguilar AA; Skoblia S; Beňo Z; Innemanová P; Linhartová L; Michalíková K; Meers E
    Chemosphere; 2021 Feb; 265():129082. PubMed ID: 33309446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of catalysts on distribution of polycyclic-aromatic hydrocarbon (PAHs) in bio-oils from the pyrolysis of dewatered sewage sludge at high and low temperatures.
    Hu Y; Yu W; Wibowo H; Xia Y; Lu Y; Yan M
    Sci Total Environ; 2019 Jun; 667():263-270. PubMed ID: 30831366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of polycyclic aromatic hydrocarbons (PAHs) formed in three-phase products from the pyrolysis of various wastewater sewage sludge.
    Hu Y; Xia Y; Di Maio F; Yu F; Yu W
    J Hazard Mater; 2020 May; 389():122045. PubMed ID: 32000122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring of methylated naphthalenes in sludge-derived pyrogenic carbonaceous materials.
    Frišták V; Laughinghouse HD; Packová A; Graser M; Soja G
    Chemosphere; 2019 Feb; 217():456-462. PubMed ID: 30439658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon dioxide as a carrier gas and biomass addition decrease the total and bioavailable polycyclic aromatic hydrocarbons in biochar produced from sewage sludge.
    Kończak M; Gao Y; Oleszczuk P
    Chemosphere; 2019 Aug; 228():26-34. PubMed ID: 31022617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of pyrolysis conditions on polycyclic aromatic hydrocarbons (PAHs) formation in particulate matter (PM) during sewage sludge pyrolysis.
    Ko JH; Wang J; Xu Q
    Chemosphere; 2018 Oct; 208():108-116. PubMed ID: 29864701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotests for environmental quality assessment of composted sewage sludge.
    Kapanen A; Vikman M; Rajasärkkä J; Virta M; Itävaara M
    Waste Manag; 2013 Jun; 33(6):1451-60. PubMed ID: 23540356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pyrolysis conditions on the total contents of polycyclic aromatic hydrocarbons in biochars produced from organic residues: Assessment of their hazard potential.
    De la Rosa JM; Sánchez-Martín ÁM; Campos P; Miller AZ
    Sci Total Environ; 2019 Jun; 667():578-585. PubMed ID: 30833256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meeting EU ELV targets: Pilot-scale pyrolysis automotive shredder residue investigation of PAHs, PCBs and environmental contaminants in the solid residue products.
    Williams KS; Khodier A
    Waste Manag; 2020 Mar; 105():233-239. PubMed ID: 32088569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycyclic aromatic hydrocarbons (PAHs) formation during the fast pyrolysis of hazardous health-care waste.
    Mohseni-Bandpei A; Majlesi M; Rafiee M; Nojavan S; Nowrouz P; Zolfagharpour H
    Chemosphere; 2019 Jul; 227():277-288. PubMed ID: 30999169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of polycyclic aromatic hydrocarbons removal during anaerobic treatment of urban sludge.
    Trably E; Patureau D; Delgenes JP
    Water Sci Technol; 2003; 48(4):53-60. PubMed ID: 14531422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PAHs content of sewage sludge in Europe and its use as soil fertilizer.
    Suciu NA; Lamastra L; Trevisan M
    Waste Manag; 2015 Jul; 41():119-27. PubMed ID: 25872863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-aerobic treatment to enhance the removal of conventional and emerging micropollutants in the digestion of waste sludge.
    Tomei MC; Mosca Angelucci D; Mascolo G; Kunkel U
    Waste Manag; 2019 Aug; 96():36-46. PubMed ID: 31376968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars.
    Zielińska A; Oleszczuk P
    Chemosphere; 2016 Jun; 153():68-74. PubMed ID: 27010168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in historically contaminated soils after lab incubation with sewage sludge-derived biochars.
    Zielińska A; Oleszczuk P
    Chemosphere; 2016 Nov; 163():480-489. PubMed ID: 27565316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stabilization of tannery sludge and the character of humic acid-like during low temperature pyrolysis.
    Ma H; Gao M; Hua L; Chao H; Xu J
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16791-802. PubMed ID: 26092361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the combined sewage sludge pyrolysis and gasification process: mass and energy balance.
    Wang Z; Chen D; Song X; Zhao L
    Environ Technol; 2012 Dec; 33(22-24):2481-8. PubMed ID: 23437644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profile of polycyclic aromatic hydrocarbons in digested sewage sludge.
    Khillare PS; Sattawan VK; Jyethi DS
    Environ Technol; 2020 Mar; 41(7):842-851. PubMed ID: 30118384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in chlorinated organic pollutants and heavy metal content of sediments during pyrolysis.
    Hu Z; Navarro R; Nomura N; Kong H; Wijesekara S; Matsumura M
    Environ Sci Pollut Res Int; 2007 Jan; 14(1):12-8. PubMed ID: 17352123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of selected organic micro-pollutants on sewage sludge biochar.
    Regkouzas P; Diamadopoulos E
    Chemosphere; 2019 Jun; 224():840-851. PubMed ID: 30852464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.