BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 33309830)

  • 1. 3D printed estradiol-eluting urogynecological mesh implants: Influence of material and mesh geometry on their mechanical properties.
    Farmer ZL; Utomo E; Domínguez-Robles J; Mancinelli C; Mathew E; Larrañeta E; Lamprou DA
    Int J Pharm; 2021 Jan; 593():120145. PubMed ID: 33309830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing of Drug-Loaded Thermoplastic Polyurethane Meshes: A Potential Material for Soft Tissue Reinforcement in Vaginal Surgery.
    Domínguez-Robles J; Mancinelli C; Mancuso E; García-Romero I; Gilmore BF; Casettari L; Larrañeta E; Lamprou DA
    Pharmaceutics; 2020 Jan; 12(1):. PubMed ID: 31941047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Urogynecological surgical mesh implants: New trends in materials, manufacturing and therapeutic approaches.
    Farmer ZL; Domínguez-Robles J; Mancinelli C; Larrañeta E; Lamprou DA
    Int J Pharm; 2020 Jul; 585():119512. PubMed ID: 32526332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oestradiol-releasing Biodegradable Mesh Stimulates Collagen Production and Angiogenesis: An Approach to Improving Biomaterial Integration in Pelvic Floor Repair.
    Mangır N; Hillary CJ; Chapple CR; MacNeil S
    Eur Urol Focus; 2019 Mar; 5(2):280-289. PubMed ID: 28753895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bioprinted endometrial stem cells on melt electrospun poly ε-caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice.
    Paul K; Darzi S; McPhee G; Del Borgo MP; Werkmeister JA; Gargett CE; Mukherjee S
    Acta Biomater; 2019 Oct; 97():162-176. PubMed ID: 31386931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melt-extrusion 3D printing of resorbable levofloxacin-loaded meshes: Emerging strategy for urogynaecological applications.
    Corduas F; Mathew E; McGlynn R; Mariotti D; Lamprou DA; Mancuso E
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112523. PubMed ID: 34857302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailor-Made 3D Printed Meshes of Alginate-Waterborne Polyurethane as Suitable Implants for Hernia Repair.
    Olmos-Juste R; Olza S; Gabilondo N; Eceiza A
    Macromol Biosci; 2022 Sep; 22(9):e2200124. PubMed ID: 35766012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue response to collagen containing polypropylene meshes in an ovine vaginal repair model.
    Darzi S; Urbankova I; Su K; White J; Lo C; Alexander D; Werkmeister JA; Gargett CE; Deprest J
    Acta Biomater; 2016 Jul; 39():114-123. PubMed ID: 27163402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of adhesion formation of a new elastic thermoplastic polyurethane (TPU) mesh in comparison to polypropylene (PP) meshes in IPOM position.
    Lambertz A; van den Hil LCL; Schöb DS; Binnebösel M; Kroh A; Klinge U; Neumann UP; Klink CD
    J Mech Behav Biomed Mater; 2016 Jan; 53():366-372. PubMed ID: 26406584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in pelvic organ prolapse mesh mechanical properties following implantation in rats.
    Ulrich D; Edwards SL; Alexander DLJ; Rosamilia A; Werkmeister JA; Gargett CE; Letouzey V
    Am J Obstet Gynecol; 2016 Feb; 214(2):260.e1-260.e8. PubMed ID: 26348376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landmarks in vaginal mesh development: polypropylene mesh for treatment of SUI and POP.
    Mangir N; Aldemir Dikici B; Chapple CR; MacNeil S
    Nat Rev Urol; 2019 Nov; 16(11):675-689. PubMed ID: 31548731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation resistance of PVDF mesh in vivo in comparison to PP mesh.
    Wang H; Klosterhalfen B; Müllen A; Otto T; Dievernich A; Jockenhövel S
    J Mech Behav Biomed Mater; 2021 Jul; 119():104490. PubMed ID: 33780848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating Alternative Materials for the Treatment of Stress Urinary Incontinence and Pelvic Organ Prolapse: A Comparison of the In Vivo Response to Meshes Implanted in Rabbits.
    Roman S; Urbánková I; Callewaert G; Lesage F; Hillary C; Osman NI; Chapple CR; Deprest J; MacNeil S
    J Urol; 2016 Jul; 196(1):261-9. PubMed ID: 26880411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization in respect to degradation of titanium-coated polypropylene surgical mesh explanted from humans.
    Farr NTH; Klosterhalfen B; Noé GK
    J Biomed Mater Res B Appl Biomater; 2023 May; 111(5):1142-1152. PubMed ID: 36610021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consensus Statement of the European Urology Association and the European Urogynaecological Association on the Use of Implanted Materials for Treating Pelvic Organ Prolapse and Stress Urinary Incontinence.
    Chapple CR; Cruz F; Deffieux X; Milani AL; Arlandis S; Artibani W; Bauer RM; Burkhard F; Cardozo L; Castro-Diaz D; Cornu JN; Deprest J; Gunnemann A; Gyhagen M; Heesakkers J; Koelbl H; MacNeil S; Naumann G; Roovers JWR; Salvatore S; Sievert KD; Tarcan T; Van der Aa F; Montorsi F; Wirth M; Abdel-Fattah M
    Eur Urol; 2017 Sep; 72(3):424-431. PubMed ID: 28413126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The challenge of stress incontinence and pelvic organ prolapse: revisiting biologic mesh materials.
    D'Angelo W; Dziki J; Badylak SF
    Curr Opin Urol; 2019 Jul; 29(4):437-442. PubMed ID: 31083010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of release modifiers to modulate drug release from fused deposition modelling (FDM) 3D printed tablets.
    Shi K; Salvage JP; Maniruzzaman M; Nokhodchi A
    Int J Pharm; 2021 Mar; 597():120315. PubMed ID: 33540000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement of transvaginal repair using polypropylene mesh functionalized with basic fibroblast growth factor.
    Zhang D; Lin ZYW; Cheng R; Wu W; Yu J; Zhao X; Chen X; Cui W
    Colloids Surf B Biointerfaces; 2016 Jun; 142():10-19. PubMed ID: 26925721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes.
    Verstraete G; Samaro A; Grymonpré W; Vanhoorne V; Van Snick B; Boone MN; Hellemans T; Van Hoorebeke L; Remon JP; Vervaet C
    Int J Pharm; 2018 Jan; 536(1):318-325. PubMed ID: 29217471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medical-Grade PCL Based Polyurethane System for FDM 3D Printing-Characterization and Fabrication.
    Haryńska A; Kucinska-Lipka J; Sulowska A; Gubanska I; Kostrzewa M; Janik H
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30884832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.