BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33310528)

  • 1. Effects of heat stress on the biological Maillard reaction, oxidative stress, and occurrence of internal browning in Japanese radish (Raphanus sativus L.).
    Fukuoka N; Hamada T
    J Plant Physiol; 2021 Jan; 256():153326. PubMed ID: 33310528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress via the Maillard reaction is associated with the occurrence of internal browning in roots of sweetpotato (Ipomoea batatas).
    Fukuoka N; Hirabayashi H; Hamada T
    Plant Physiol Biochem; 2020 Sep; 154():21-29. PubMed ID: 32521441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism Underlying the Onset of Internal Blue Discoloration in Japanese Radish (Raphanus sativus) Roots.
    Teranishi K; Masayasu N; Masuda D
    J Agric Food Chem; 2016 Sep; 64(35):6745-51. PubMed ID: 27530819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of changes in root biomass on the occurrence of internal browning in radish root.
    Fukuoka N; Watanabe R; Hamada T
    Plant Physiol Biochem; 2024 May; 210():108563. PubMed ID: 38554535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local boron concentrations in tuberous roots of Japanese radish (Raphanus sativus L.) negatively correlate with distribution of brown heart.
    Sotta N; Bian B; Peng D; Hongkham P; Kamiya T; Niikura S; Fujiwara T
    Plant Physiol Biochem; 2019 Mar; 136():58-66. PubMed ID: 30654288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot.
    Wang R; Mei Y; Xu L; Zhu X; Wang Y; Guo J; Liu L
    Planta; 2018 May; 247(5):1109-1122. PubMed ID: 29368016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of a Precursor to the Blue Components Produced in the Blue Discoloration in Japanese Radish (Raphanus sativus) Roots.
    Teranishi K; Masayasu N
    J Nat Prod; 2016 May; 79(5):1381-7. PubMed ID: 27128155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide characterization of differentially expressed genes provides insights into regulatory network of heat stress response in radish (Raphanus sativus L.).
    Wang R; Mei Y; Xu L; Zhu X; Wang Y; Guo J; Liu L
    Funct Integr Genomics; 2018 Mar; 18(2):225-239. PubMed ID: 29332191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root Glucosinolate Profiles for Screening of Radish (Raphanus sativus L.) Genetic Resources.
    Yi G; Lim S; Chae WB; Park JE; Park HR; Lee EJ; Huh JH
    J Agric Food Chem; 2016 Jan; 64(1):61-70. PubMed ID: 26672790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effects of Cadmium Exposure on Cadmium Fractionation and Enzyme Activities in the Rhizosphere of Two Radish Cultivars (Raphanus sativus L.).
    Xin J; Zhao X; Tan Q; Sun X; Wen X; Qin S; Hu C
    Bull Environ Contam Toxicol; 2017 Feb; 98(2):290-295. PubMed ID: 27933329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in amylase activities in radish (Raphanus sativus) cultivars.
    Hara M; Ito F; Asai T; Kuboi T
    Plant Foods Hum Nutr; 2009 Sep; 64(3):188-92. PubMed ID: 19655255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress response and programmed cell death guided by NAC013 modulate pithiness in radish taproots.
    Hoang NV; Park S; Park C; Suh H; Kim ST; Chae E; Kang BC; Lee JY
    Plant J; 2022 Jan; 109(1):144-163. PubMed ID: 34724278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and physiological analyses of root cracking in radish (Raphanus sativus L.).
    Yu X; Choi SR; Chhapekar SS; Lu L; Ma Y; Lee JY; Hong S; Kim YY; Oh SH; Lim YP
    Theor Appl Genet; 2019 Dec; 132(12):3425-3437. PubMed ID: 31562568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel glucosinolate composition lacking 4-methylthio-3-butenyl glucosinolate in Japanese white radish (Raphanus sativus L.).
    Ishida M; Kakizaki T; Morimitsu Y; Ohara T; Hatakeyama K; Yoshiaki H; Kohori J; Nishio T
    Theor Appl Genet; 2015 Oct; 128(10):2037-46. PubMed ID: 26152572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification, expression, and functional analysis of CLE genes in radish (Raphanus sativus L.) storage root.
    Gancheva MS; Dodueva IE; Lebedeva MA; Tvorogova VE; Tkachenko AA; Lutova LA
    BMC Plant Biol; 2016 Jan; 16 Suppl 1(Suppl 1):7. PubMed ID: 26821718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of cadmium absorption, translocation, subcellular distribution and chemical forms between two radish cultivars (Raphanus sativus L.).
    Xin J; Zhao X; Tan Q; Sun X; Hu C
    Ecotoxicol Environ Saf; 2017 Nov; 145():258-265. PubMed ID: 28753418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting Root Proteome Changes Reveals New Insight into Cadmium Stress Response in Radish (Raphanus sativus L.).
    Xu L; Wang Y; Zhang F; Tang M; Chen Y; Wang J; Karanja BK; Luo X; Zhang W; Liu L
    Plant Cell Physiol; 2017 Nov; 58(11):1901-1913. PubMed ID: 29016946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in Cd accumulation among radish cultivars and identification of low-Cd cultivars.
    Dai H; Yang Z
    Environ Sci Pollut Res Int; 2017 Jun; 24(17):15116-15124. PubMed ID: 28497327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence of internal browning in tuberous roots of sweetpotato and its related starch biosynthesis.
    Fukuoka N; Miyata M; Hamada T; Takeshita E
    Plant Physiol Biochem; 2019 Feb; 135():233-241. PubMed ID: 30578999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic Profiling and Antioxidant Assay of Metabolites from Three Radish Cultivars (Raphanus sativus).
    Park CH; Baskar TB; Park SY; Kim SJ; Valan Arasu M; Al-Dhabi NA; Kim JK; Park SU
    Molecules; 2016 Jan; 21(2):157. PubMed ID: 26828471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.