BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 33310538)

  • 1. How is flexible electronics advancing neuroscience research?
    Chen Y; Rommelfanger NJ; Mahdi AI; Wu X; Keene ST; Obaid A; Salleo A; Wang H; Hong G
    Biomaterials; 2021 Jan; 268():120559. PubMed ID: 33310538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired flexible electronics for seamless neural interfacing and chronic recording.
    Li H; Wang J; Fang Y
    Nanoscale Adv; 2020 Aug; 2(8):3095-3102. PubMed ID: 36134275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable, Self-Rolled, Microfluidic Electronics Enable Conformable Neural Interfaces of Brain and Vagus Neuromodulation.
    Dong R; Wang L; Li Z; Jiao J; Wu Y; Feng Z; Wang X; Chen M; Cui C; Lu Y; Jiang X
    ACS Nano; 2024 Jan; 18(2):1702-1713. PubMed ID: 38165231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoenabled Direct Contact Interfacing of Syringe-Injectable Mesh Electronics.
    Lee JM; Hong G; Lin D; Schuhmann TG; Sullivan AT; Viveros RD; Park HG; Lieber CM
    Nano Lett; 2019 Aug; 19(8):5818-5826. PubMed ID: 31361503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain.
    Zhou T; Hong G; Fu TM; Yang X; Schuhmann TG; Viveros RD; Lieber CM
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5894-5899. PubMed ID: 28533392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesh electronics: a new paradigm for tissue-like brain probes.
    Hong G; Yang X; Zhou T; Lieber CM
    Curr Opin Neurobiol; 2018 Jun; 50():33-41. PubMed ID: 29202327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology.
    Li J; Song E; Chiang CH; Yu KJ; Koo J; Du H; Zhong Y; Hill M; Wang C; Zhang J; Chen Y; Tian L; Zhong Y; Fang G; Viventi J; Rogers JA
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9542-E9549. PubMed ID: 30228119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.
    Dai X; Hong G; Gao T; Lieber CM
    Acc Chem Res; 2018 Feb; 51(2):309-318. PubMed ID: 29381054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Materials for flexible bioelectronic systems as chronic neural interfaces.
    Song E; Li J; Won SM; Bai W; Rogers JA
    Nat Mater; 2020 Jun; 19(6):590-603. PubMed ID: 32461684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient electronics: new opportunities for implantable neurotechnology.
    Fanelli A; Ghezzi D
    Curr Opin Biotechnol; 2021 Dec; 72():22-28. PubMed ID: 34464936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skin-Inspired Electronics: An Emerging Paradigm.
    Wang S; Oh JY; Xu J; Tran H; Bao Z
    Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stitching Flexible Electronics into the Brain.
    Lee JM; Lin D; Pyo YW; Kim HR; Park HG; Lieber CM
    Adv Sci (Weinh); 2023 Jun; 10(16):e2300220. PubMed ID: 37127888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging Materials and Technologies with Applications in Flexible Neural Implants: A Comprehensive Review of Current Issues with Neural Devices.
    Cho Y; Park S; Lee J; Yu KJ
    Adv Mater; 2021 Nov; 33(47):e2005786. PubMed ID: 34050691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
    Deshmukh A; Brown L; Barbe MF; Braverman AS; Tiwari E; Hobson L; Shunmugam S; Armitage O; Hewage E; Ruggieri MR; Morizio J
    J Neurosci Methods; 2020 Mar; 333():108562. PubMed ID: 31862376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Syringe-injectable Mesh Electronics for Stable Chronic Rodent Electrophysiology.
    Schuhmann TG; Zhou T; Hong G; Lee JM; Fu TM; Park HG; Lieber CM
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30080192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cleanroom strategies for micro- and nano-fabricating flexible implantable neural electronics.
    Walton F; Cerezo-Sanchez M; McGlynn E; Das R; Heidari H
    Philos Trans A Math Phys Eng Sci; 2022 Jul; 380(2228):20210009. PubMed ID: 35658678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electro-optical mechanically flexible coaxial microprobes for minimally invasive interfacing with intrinsic neural circuits.
    Ward S; Riley C; Carey EM; Nguyen J; Esener S; Nimmerjahn A; Sirbuly DJ
    Nat Commun; 2022 Jun; 13(1):3286. PubMed ID: 35672294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft High-Resolution Neural Interfacing Probes: Materials and Design Approaches.
    Lee M; Shim HJ; Choi C; Kim DH
    Nano Lett; 2019 May; 19(5):2741-2749. PubMed ID: 31002760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired Materials for
    Woods GA; Rommelfanger NJ; Hong G
    Matter; 2020 Oct; 3(4):1087-1113. PubMed ID: 33103115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.