BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 33310538)

  • 41. Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces.
    Song KI; Seo H; Seong D; Kim S; Yu KJ; Kim YC; Kim J; Kwon SJ; Han HS; Youn I; Lee H; Son D
    Nat Commun; 2020 Aug; 11(1):4195. PubMed ID: 32826916
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation.
    Kim D; Yokota T; Suzuki T; Lee S; Woo T; Yukita W; Koizumi M; Tachibana Y; Yawo H; Onodera H; Sekino M; Someya T
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21138-21146. PubMed ID: 32817422
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioinspired neuron-like electronics.
    Yang X; Zhou T; Zwang TJ; Hong G; Zhao Y; Viveros RD; Fu TM; Gao T; Lieber CM
    Nat Mater; 2019 May; 18(5):510-517. PubMed ID: 30804509
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.
    Zhang J; Liu X; Xu W; Luo W; Li M; Chu F; Xu L; Cao A; Guan J; Tang S; Duan X
    Nano Lett; 2018 May; 18(5):2903-2911. PubMed ID: 29608857
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording.
    Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM
    J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339
    [TBL] [Abstract][Full Text] [Related]  

  • 46. All-Tissue-like Multifunctional Optoelectronic Mesh for Deep-Brain Modulation and Mapping.
    Lee JM; Lin D; Kim HR; Pyo YW; Hong G; Lieber CM; Park HG
    Nano Lett; 2021 Apr; 21(7):3184-3190. PubMed ID: 33734716
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light.
    Jeong J; Jung J; Jung D; Kim J; Ju H; Kim T; Lee J
    Biosens Bioelectron; 2021 May; 180():113139. PubMed ID: 33714161
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design Choices for Next-Generation Neurotechnology Can Impact Motion Artifact in Electrophysiological and Fast-Scan Cyclic Voltammetry Measurements.
    Nicolai EN; Michelson NJ; Settell ML; Hara SA; Trevathan JK; Asp AJ; Stocking KC; Lujan JL; Kozai TDY; Ludwig KA
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424427
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors.
    Li T; Li Y; Zhang T
    Acc Chem Res; 2019 Feb; 52(2):288-296. PubMed ID: 30653299
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hybrid fabrication of multimodal intracranial implants for electrophysiology and local drug delivery.
    Gurke J; Naegele TE; Hilton S; Pezone R; Curto VF; Barone DG; List-Kratochvil EJW; Carnicer-Lombarte A; Malliaras GG
    Mater Horiz; 2022 Jun; 9(6):1727-1734. PubMed ID: 35474130
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials.
    Choi S; Lee H; Ghaffari R; Hyeon T; Kim DH
    Adv Mater; 2016 Jun; 28(22):4203-18. PubMed ID: 26779680
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D printed microstructures for flexible electronic devices.
    Liu Y; Xu Y; Avila R; Liu C; Xie Z; Wang L; Yu X
    Nanotechnology; 2019 Oct; 30(41):414001. PubMed ID: 31247596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microfluidic neural probes: in vivo tools for advancing neuroscience.
    Sim JY; Haney MP; Park SI; McCall JG; Jeong JW
    Lab Chip; 2017 Apr; 17(8):1406-1435. PubMed ID: 28349140
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Donut-Shaped Stretchable Kirigami: Enabling Electronics to Integrate with the Deformable Muscle.
    Morikawa Y; Yamagiwa S; Sawahata H; Numano R; Koida K; Kawano T
    Adv Healthc Mater; 2019 Dec; 8(23):e1900939. PubMed ID: 31697038
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring.
    Liu Y; Pharr M; Salvatore GA
    ACS Nano; 2017 Oct; 11(10):9614-9635. PubMed ID: 28901746
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Properties and application of a multichannel integrated circuit for low-artifact, patterned electrical stimulation of neural tissue.
    Hottowy P; Skoczeń A; Gunning DE; Kachiguine S; Mathieson K; Sher A; Wiącek P; Litke AM; Dąbrowski W
    J Neural Eng; 2012 Dec; 9(6):066005. PubMed ID: 23160018
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics.
    Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW
    Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Emerging Frontier of Peripheral Nerve and Organ Interfaces.
    Shahriari D; Rosenfeld D; Anikeeva P
    Neuron; 2020 Oct; 108(2):270-285. PubMed ID: 33120023
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.
    Wang S; Xu J; Wang W; Wang GN; Rastak R; Molina-Lopez F; Chung JW; Niu S; Feig VR; Lopez J; Lei T; Kwon SK; Kim Y; Foudeh AM; Ehrlich A; Gasperini A; Yun Y; Murmann B; Tok JB; Bao Z
    Nature; 2018 Mar; 555(7694):83-88. PubMed ID: 29466334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.