These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Colocalization of corneal resistance factor GWAS loci with GTEx e/sQTLs highlights plausible candidate causal genes for keratoconus postnatal corneal stroma weakening. Jiang X; Boutin T; Vitart V Front Genet; 2023; 14():1171217. PubMed ID: 37621707 [No Abstract] [Full Text] [Related]
3. Association of Novel Loci With Keratoconus Susceptibility in a Multitrait Genome-Wide Association Study of the UK Biobank Database and Canadian Longitudinal Study on Aging. He W; Han X; Ong JS; Hewitt AW; Mackey DA; Gharahkhani P; MacGregor S; JAMA Ophthalmol; 2022 Jun; 140(6):568-576. PubMed ID: 35446358 [TBL] [Abstract][Full Text] [Related]
4. A practical view of fine-mapping and gene prioritization in the post-genome-wide association era. Broekema RV; Bakker OB; Jonkers IH Open Biol; 2020 Jan; 10(1):190221. PubMed ID: 31937202 [TBL] [Abstract][Full Text] [Related]
5. Functional mapping and annotation of genetic associations with FUMA. Watanabe K; Taskesen E; van Bochoven A; Posthuma D Nat Commun; 2017 Nov; 8(1):1826. PubMed ID: 29184056 [TBL] [Abstract][Full Text] [Related]
6. Leveraging allelic imbalance to refine fine-mapping for eQTL studies. Zou J; Hormozdiari F; Jew B; Castel SE; Lappalainen T; Ernst J; Sul JH; Eskin E PLoS Genet; 2019 Dec; 15(12):e1008481. PubMed ID: 31834882 [TBL] [Abstract][Full Text] [Related]
7. Identification of candidate causal variants and target genes at 41 breast cancer risk loci through differential allelic expression analysis. Xavier JM; Magno R; Russell R; de Almeida BP; Jacinta-Fernandes A; Besouro-Duarte A; Dunning M; Samarajiwa S; O'Reilly M; Maia AM; Rocha CL; Rosli N; Ponder BAJ; Maia AT Sci Rep; 2024 Sep; 14(1):22526. PubMed ID: 39341862 [TBL] [Abstract][Full Text] [Related]
8. Weighting sequence variants based on their annotation increases the power of genome-wide association studies in dairy cattle. Cai Z; Guldbrandtsen B; Lund MS; Sahana G Genet Sel Evol; 2019 May; 51(1):20. PubMed ID: 31077144 [TBL] [Abstract][Full Text] [Related]
9. Cannon ME; Duan Q; Wu Y; Zeynalzadeh M; Xu Z; Kangas AJ; Soininen P; Ala-Korpela M; Civelek M; Lusis AJ; Kuusisto J; Collins FS; Boehnke M; Tang H; Laakso M; Li Y; Mohlke KL G3 (Bethesda); 2017 Sep; 7(9):3217-3227. PubMed ID: 28754724 [TBL] [Abstract][Full Text] [Related]
10. Fine-mapping of Parkinson's disease susceptibility loci identifies putative causal variants. Schilder BM; Raj T Hum Mol Genet; 2022 Mar; 31(6):888-900. PubMed ID: 34617105 [TBL] [Abstract][Full Text] [Related]
11. Redefining tissue specificity of genetic regulation of gene expression in the presence of allelic heterogeneity. Arvanitis M; Tayeb K; Strober BJ; Battle A Am J Hum Genet; 2022 Feb; 109(2):223-239. PubMed ID: 35085493 [TBL] [Abstract][Full Text] [Related]
12. Leveraging supervised learning for functionally informed fine-mapping of cis-eQTLs identifies an additional 20,913 putative causal eQTLs. Wang QS; Kelley DR; Ulirsch J; Kanai M; Sadhuka S; Cui R; Albors C; Cheng N; Okada Y; ; Aguet F; Ardlie KG; MacArthur DG; Finucane HK Nat Commun; 2021 Jun; 12(1):3394. PubMed ID: 34099641 [TBL] [Abstract][Full Text] [Related]
13. Understanding the role of corneal biomechanics-associated genetic variants by bioinformatic analyses. Sun X; Gao X; Mu BK; Wang Y Int Ophthalmol; 2022 Mar; 42(3):981-988. PubMed ID: 34642840 [TBL] [Abstract][Full Text] [Related]
14. Fine mapping of candidate effector genes for heart rate. Ramírez J; van Duijvenboden S; Young WJ; Chen Y; Usman T; Orini M; Lambiase PD; Tinker A; Bell CG; Morris AP; Munroe PB Hum Genet; 2024 Oct; 143(9-10):1207-1221. PubMed ID: 38969939 [TBL] [Abstract][Full Text] [Related]
15. Systematic analysis of chromatin interactions at disease associated loci links novel candidate genes to inflammatory bowel disease. Meddens CA; Harakalova M; van den Dungen NA; Foroughi Asl H; Hijma HJ; Cuppen EP; Björkegren JL; Asselbergs FW; Nieuwenhuis EE; Mokry M Genome Biol; 2016 Nov; 17(1):247. PubMed ID: 27903283 [TBL] [Abstract][Full Text] [Related]
16. Pinpointing miRNA and genes enrichment over trait-relevant tissue network in Genome-Wide Association Studies. Li B; Dong J; Yu J; Fan Y; Shang L; Zhou X; Bai Y BMC Med Genomics; 2020 Dec; 13(Suppl 11):191. PubMed ID: 33371893 [TBL] [Abstract][Full Text] [Related]
17. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Mountjoy E; Schmidt EM; Carmona M; Schwartzentruber J; Peat G; Miranda A; Fumis L; Hayhurst J; Buniello A; Karim MA; Wright D; Hercules A; Papa E; Fauman EB; Barrett JC; Todd JA; Ochoa D; Dunham I; Ghoussaini M Nat Genet; 2021 Nov; 53(11):1527-1533. PubMed ID: 34711957 [TBL] [Abstract][Full Text] [Related]
18. A statistical approach to fine-mapping for the identification of potential causal variants related to human intelligence. Gong Y; Greenbaum J; Deng HW J Hum Genet; 2019 Aug; 64(8):781-787. PubMed ID: 31165785 [TBL] [Abstract][Full Text] [Related]
19. Disentangling the Effects of Colocalizing Genomic Annotations to Functionally Prioritize Non-coding Variants within Complex-Trait Loci. Trynka G; Westra HJ; Slowikowski K; Hu X; Xu H; Stranger BE; Klein RJ; Han B; Raychaudhuri S Am J Hum Genet; 2015 Jul; 97(1):139-52. PubMed ID: 26140449 [TBL] [Abstract][Full Text] [Related]
20. Chromatin Landscapes of Human Lung Cells Predict Potentially Functional Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Variants. Benway CJ; Liu J; Guo F; Du F; Randell SH; Cho MH; Silverman EK; Zhou X; Am J Respir Cell Mol Biol; 2021 Jul; 65(1):92-102. PubMed ID: 33788674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]