These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 33311589)

  • 1. Phosphorylation-dependent regulation of SPOP by LIMK2 promotes castration-resistant prostate cancer.
    Nikhil K; Haymour HS; Kamra M; Shah K
    Br J Cancer; 2021 Mar; 124(5):995-1008. PubMed ID: 33311589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative cross talk between LIMK2 and PTEN promotes castration resistant prostate cancer pathogenesis in cells and in vivo.
    Nikhil K; Kamra M; Raza A; Shah K
    Cancer Lett; 2021 Feb; 498():1-18. PubMed ID: 32931887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutated SPOP E3 Ligase Promotes 17βHSD4 Protein Degradation to Drive Androgenesis and Prostate Cancer Progression.
    Shi L; Yan Y; He Y; Yan B; Pan Y; Orme JJ; Zhang J; Xu W; Pang J; Huang H
    Cancer Res; 2021 Jul; 81(13):3593-3606. PubMed ID: 33762355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPOP promotes CDCA5 degradation to regulate prostate cancer progression via the AKT pathway.
    Luo Z; Wang J; Zhu Y; Sun X; He C; Cai M; Ma J; Wang Y; Han S
    Neoplasia; 2021 Oct; 23(10):1037-1047. PubMed ID: 34509929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Interplay between AURKA and SPOP Dictates CRPC Pathogenesis via Androgen Receptor.
    Nikhil K; Kamra M; Raza A; Haymour HS; Shah K
    Cancers (Basel); 2020 Nov; 12(11):. PubMed ID: 33158056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LIMK2-NKX3.1 Engagement Promotes Castration-Resistant Prostate Cancer.
    Sooreshjani MA; Nikhil K; Kamra M; Nguyen DN; Kumar D; Shah K
    Cancers (Basel); 2021 May; 13(10):. PubMed ID: 34066036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPOP regulates prostate epithelial cell proliferation and promotes ubiquitination and turnover of c-MYC oncoprotein.
    Geng C; Kaochar S; Li M; Rajapakshe K; Fiskus W; Dong J; Foley C; Dong B; Zhang L; Kwon OJ; Shah SS; Bolaki M; Xin L; Ittmann M; O'Malley BW; Coarfa C; Mitsiades N
    Oncogene; 2017 Aug; 36(33):4767-4777. PubMed ID: 28414305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of LIMK2 as a therapeutic target in castration resistant prostate cancer.
    Nikhil K; Chang L; Viccaro K; Jacobsen M; McGuire C; Satapathy SR; Tandiary M; Broman MM; Cresswell G; He YJ; Sandusky GE; Ratliff TL; Chowdhury D; Shah K
    Cancer Lett; 2019 Apr; 448():182-196. PubMed ID: 30716360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPOP-mediated ubiquitination and degradation of PDK1 suppresses AKT kinase activity and oncogenic functions.
    Jiang Q; Zheng N; Bu L; Zhang X; Zhang X; Wu Y; Su Y; Wang L; Zhang X; Ren S; Dai X; Wu D; Xie W; Wei W; Zhu Y; Guo J
    Mol Cancer; 2021 Aug; 20(1):100. PubMed ID: 34353330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G3BP1 inhibits Cul3
    Mukhopadhyay C; Yang C; Xu L; Liu D; Wang Y; Huang D; Deonarine LD; Cyrta J; Davicioni E; Sboner A; Robinson BD; Chinnaiyan AM; Rubin MA; Barbieri CE; Zhou P
    Nat Commun; 2021 Nov; 12(1):6662. PubMed ID: 34795264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GLI3 Is Stabilized by SPOP Mutations and Promotes Castration Resistance via Functional Cooperation with Androgen Receptor in Prostate Cancer.
    Burleson M; Deng JJ; Qin T; Duong TM; Yan Y; Gu X; Das D; Easley A; Liss MA; Yew PR; Bedolla R; Kumar AP; Huang TH; Zou Y; Chen Y; Chen CL; Huang H; Sun LZ; Boyer TG
    Mol Cancer Res; 2022 Jan; 20(1):62-76. PubMed ID: 34610962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer.
    Groner AC; Cato L; de Tribolet-Hardy J; Bernasocchi T; Janouskova H; Melchers D; Houtman R; Cato ACB; Tschopp P; Gu L; Corsinotti A; Zhong Q; Fankhauser C; Fritz C; Poyet C; Wagner U; Guo T; Aebersold R; Garraway LA; Wild PJ; Theurillat JP; Brown M
    Cancer Cell; 2016 Jun; 29(6):846-858. PubMed ID: 27238081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription.
    Jia L; Wu D; Wang Y; You W; Wang Z; Xiao L; Cai G; Xu Z; Zou C; Wang F; Teoh JY; Ng CF; Yu S; Chan FL
    Oncogene; 2018 Jun; 37(25):3340-3355. PubMed ID: 29555975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes enzalutamide resistance in castration-resistant prostate cancer.
    Bai Y; Zhang Z; Cheng L; Wang R; Chen X; Kong Y; Feng F; Ahmad N; Li L; Liu X
    J Biol Chem; 2019 Jun; 294(25):9911-9923. PubMed ID: 31085587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual functions of SPOP and ERG dictate androgen therapy responses in prostate cancer.
    Bernasocchi T; El Tekle G; Bolis M; Mutti A; Vallerga A; Brandt LP; Spriano F; Svinkina T; Zoma M; Ceserani V; Rinaldi A; Janouskova H; Bossi D; Cavalli M; Mosole S; Geiger R; Dong Z; Yang CG; Albino D; Rinaldi A; Schraml P; Linder S; Carbone GM; Alimonti A; Bertoni F; Moch H; Carr SA; Zwart W; Kruithof-de Julio M; Rubin MA; Udeshi ND; Theurillat JP
    Nat Commun; 2021 Feb; 12(1):734. PubMed ID: 33531470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG.
    Tan P; Xu Y; Du Y; Wu L; Guo B; Huang S; Zhu J; Li B; Lin F; Yao L
    Cell Death Dis; 2019 Oct; 10(11):794. PubMed ID: 31624231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivation of androgen receptor-regulated lipid biosynthesis drives the progression of castration-resistant prostate cancer.
    Han W; Gao S; Barrett D; Ahmed M; Han D; Macoska JA; He HH; Cai C
    Oncogene; 2018 Feb; 37(6):710-721. PubMed ID: 29059155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPOP promotes ubiquitination and degradation of LATS1 to enhance kidney cancer progression.
    Wang L; Lin M; Chu M; Liu Y; Ma J; He Y; Wang ZW
    EBioMedicine; 2020 Jun; 56():102795. PubMed ID: 32460168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preclinical studies using cisplatin/carboplatin to restore the Enzalutamide sensitivity via degrading the androgen receptor splicing variant 7 (ARv7) to further suppress Enzalutamide resistant prostate cancer.
    Chou FJ; Lin C; Tian H; Lin W; You B; Lu J; Sahasrabudhe D; Huang CP; Yang V; Yeh S; Niu Y; Chang C
    Cell Death Dis; 2020 Nov; 11(11):942. PubMed ID: 33139720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ERK1/2 inhibits Cullin 3/SPOP-mediated PrLZ ubiquitination and degradation to modulate prostate cancer progression.
    Fan Y; Hou T; Dan W; Zhu Y; Liu B; Wei Y; Wang Z; Gao Y; Zeng J; Li L
    Cell Death Differ; 2022 Aug; 29(8):1611-1624. PubMed ID: 35194188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.