These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33312015)

  • 1. Screening of Endophytic Fungal Isolates Against
    Nguyen MH; Yong JH; Sung HJ; Lee JK
    Mycobiology; 2020 Oct; 48(6):484-494. PubMed ID: 33312015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic diversity and population structure of
    Kim MS; Hohenlohe PA; Kim KH; Seo ST; Klopfenstein NB
    For Pathol; 2016 Apr; 46(2):164-167. PubMed ID: 27087782
    [No Abstract]   [Full Text] [Related]  

  • 3. Draft Genome Sequence of the Fungus Associated with Oak Wilt Mortality in South Korea,
    Jeon J; Kim KT; Song H; Lee GW; Cheong K; Kim H; Choi G; Lee YH; Stewart JE; Klopfenstein NB; Kim MS
    Genome Announc; 2017 Aug; 5(34):. PubMed ID: 28839019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal Community Analyses of Endophytic Fungi from Two Oak Species,
    Nguyen MH; Shin KC; Lee JK
    Mycobiology; 2021; 49(4):385-395. PubMed ID: 34512082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp.
    Kim SW; Kim KS; Lamsal K; Kim YJ; Kim SB; Jung M; Sim SJ; Kim HS; Chang SJ; Kim JK; Lee YS
    J Microbiol Biotechnol; 2009 Aug; 19(8):760-4. PubMed ID: 19734712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filamentous Fungi Isolated from Platypus koryoensis, the Insect Vector of Oak Wilt Disease in Korea.
    Suh DY; Hyun MW; Kim SH; Seo ST; Kim KH
    Mycobiology; 2011 Dec; 39(4):313-6. PubMed ID: 22783124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Raffaelea quercus-mongolicae Inoculations on the Formation of Non-conductive Sapwood of Quercus mongolica.
    Torii M; Matsuda Y; Seo ST; Kim KH; Ito S; Moon MJ; Kim SH; Yamada T
    Mycobiology; 2014 Jun; 42(2):210-4. PubMed ID: 25071395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogeny of ambrosia beetle symbionts in the genus Raffaelea.
    Dreaden TJ; Davis JM; de Beer ZW; Ploetz RC; Soltis PS; Wingfield MJ; Smith JA
    Fungal Biol; 2014 Dec; 118(12):970-8. PubMed ID: 25457944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast Associated with the Ambrosia Beetle, Platypus koryoensis, the Pest of Oak Trees in Korea.
    Yun YH; Suh DY; Yoo HD; Oh MH; Kim SH
    Mycobiology; 2015 Dec; 43(4):458-66. PubMed ID: 26839506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First Report of the Oak Wilt Fungus, Ceratocystis fagacearum, in New York State.
    Jensen-Tracy S; Kenaley S; Hudler G; Harrington T; Logue C
    Plant Dis; 2009 Apr; 93(4):428. PubMed ID: 30764247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New compounds from Japanese oak wilt disease-associated fungus
    Nakamura T; Supratman U; Harneti D; Maharani R; Koseki T; Shiono Y
    Nat Prod Res; 2021 Dec; 35(23):5304-5310. PubMed ID: 32290697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral differentiation of oak wilt from foliar fungal disease and drought is correlated with physiological changes.
    Fallon B; Yang A; Lapadat C; Armour I; Juzwik J; Montgomery RA; Cavender-Bares J
    Tree Physiol; 2020 Mar; 40(3):377-390. PubMed ID: 32031662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of
    Lee T; Park D; Kim K; Lim SM; Yu NH; Kim S; Kim HY; Jung KS; Jang JY; Park JC; Ham H; Lee S; Hong SK; Kim JC
    Plant Pathol J; 2017 Oct; 33(5):499-507. PubMed ID: 29018313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mortality due to Japanese oak wilt disease and surrounding forest compositions.
    Oguro M; Imahiro S; Saito S; Nakashizuka T
    Data Brief; 2015 Dec; 5():208-12. PubMed ID: 26543883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fumigant Antifungal Activity via Reactive Oxygen Species of
    Kim JE; Lee JE; Huh MJ; Lee SC; Seo SM; Kwon JH; Park IK
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31623331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of endophytes with biocontrol potential from Ziziphus jujuba and its inhibition effects on Alternaria alternata, the pathogen of jujube shrunken-fruit disease.
    Lang JF; Tian XL; Shi MW; Ran LX
    PLoS One; 2018; 13(6):e0199466. PubMed ID: 29944684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen species mediated-antifungal activity of cinnamon bark (Cinnamomum verum) and lemongrass (Cymbopogon citratus) essential oils and their constituents against two phytopathogenic fungi.
    Lee JE; Seo SM; Huh MJ; Lee SC; Park IK
    Pestic Biochem Physiol; 2020 Sep; 168():104644. PubMed ID: 32711777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attack pattern of Platypus koryoensis (Coleoptera: Curculionidae: Platypodinae) in relation to crown dieback of Mongolian oak in Korea.
    Lee JS; Haack RA; Choi WI
    Environ Entomol; 2011 Dec; 40(6):1363-9. PubMed ID: 22217750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic comparisons of the laurel wilt pathogen, Raffaelea lauricola, and related tree pathogens highlight an arsenal of pathogenicity related genes.
    Ibarra Caballero JR; Jeon J; Lee YH; Fraedrich S; Klopfenstein NB; Kim MS; Stewart JE
    Fungal Genet Biol; 2019 Apr; 125():84-92. PubMed ID: 30716558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of isoprene emissions from live oak (Quercus fusiformis) with oak wilt.
    Anderson LJ; Harley PC; Monson RK; Jackson RB
    Tree Physiol; 2000 Nov; 20(17):1199-1203. PubMed ID: 12651496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.