These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 33312591)
1. Performance of new biodegradable chelants in enhancing phytoextraction of heavy metals from a contaminated calcareous soil. Masoudi F; Shirvani M; Shariatmadari H; Sabzalian MR J Environ Health Sci Eng; 2020 Dec; 18(2):655-664. PubMed ID: 33312591 [TBL] [Abstract][Full Text] [Related]
2. [Enhanced Phytoextraction of Heavy Metals from Contaminated Soils Using Sedum alfredii Hance with Biodegradable Chelate GLDA]. Wei ZB; Chen XH; Wu QT; Tan M Huan Jing Ke Xue; 2015 May; 36(5):1864-9. PubMed ID: 26314141 [TBL] [Abstract][Full Text] [Related]
3. GLDA and EDTA assisted phytoremediation potential of Guan H; Dong L; Zhang Y; Bai S; Yan L Int J Phytoremediation; 2022; 24(13):1395-1404. PubMed ID: 35166632 [TBL] [Abstract][Full Text] [Related]
4. GLDA exhibits advantages in the phytoextraction of Cd and Ni in land-applied municipal sludge. Wu J; Qiu Y; Yang H; Chen J; Chen S; Li F Environ Sci Pollut Res Int; 2024 Aug; 31(39):51921-51933. PubMed ID: 39134793 [TBL] [Abstract][Full Text] [Related]
5. Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants. Begum ZA; Rahman IM; Tate Y; Sawai H; Maki T; Hasegawa H Chemosphere; 2012 Jun; 87(10):1161-70. PubMed ID: 22391046 [TBL] [Abstract][Full Text] [Related]
6. Chelate assisted phytoextraction for effective rehabilitation of heavy metal(loid)s contaminated lands. Chengatt AP; Sarath NG; Sebastian DP; Mohanan NS; Sindhu ES; George S; Puthur JT Int J Phytoremediation; 2023; 25(8):981-996. PubMed ID: 36148488 [TBL] [Abstract][Full Text] [Related]
7. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445 [TBL] [Abstract][Full Text] [Related]
8. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Lai HY; Chen ZS Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153 [TBL] [Abstract][Full Text] [Related]
9. Heavy metal phytoextraction-natural and EDTA-assisted remediation of contaminated calcareous soils by sorghum and oat. Mahmood-Ul-Hassan M; Suthar V; Ahmad R; Yousra M Environ Monit Assess; 2017 Oct; 189(11):591. PubMed ID: 29086096 [TBL] [Abstract][Full Text] [Related]
10. Microbe-EDTA mediated approach in the phytoremediation of lead-contaminated soils using maize ( Menhas S; Hayat K; Niazi NK; Zhou P; Amna ; Bundschuh J; Naeem M; Munis MFH; Yang X; Chaudhary HJ Int J Phytoremediation; 2021; 23(6):585-596. PubMed ID: 33166474 [TBL] [Abstract][Full Text] [Related]
11. Effects of IDSA, EDDS and EDTA on heavy metals accumulation in hydroponically grown maize (Zea mays, L.). Zhao Z; Xi M; Jiang G; Liu X; Bai Z; Huang Y J Hazard Mater; 2010 Sep; 181(1-3):455-9. PubMed ID: 20627568 [TBL] [Abstract][Full Text] [Related]
12. Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. Lombi E; Zhao FJ; Dunham SJ; McGrath SP J Environ Qual; 2001; 30(6):1919-26. PubMed ID: 11789997 [TBL] [Abstract][Full Text] [Related]
13. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Luo C; Shen Z; Li X; Baker AJ Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960 [TBL] [Abstract][Full Text] [Related]
14. Remediation of cadmium-contaminated soil: GLDA-assisted extraction and sequential FeCl Ni S; Rahman S; Harada Y; Yoshioka S; Imaizumi M; Wong KH; Mashio AS; Ohta A; Hasegawa H Chemosphere; 2024 Jan; 346():140554. PubMed ID: 38303381 [TBL] [Abstract][Full Text] [Related]
15. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility. Wang G; Zhang S; Xu X; Zhong Q; Zhang C; Jia Y; Li T; Deng O; Li Y Sci Total Environ; 2016 Nov; 569-570():557-568. PubMed ID: 27371771 [TBL] [Abstract][Full Text] [Related]
16. [Enhanced Phytoextraction of Cadmium Contaminated Soil by He YL; Yu J; Xie SQ; Li PR; Zhou K; He H Huan Jing Ke Xue; 2020 Feb; 41(2):979-985. PubMed ID: 32608760 [TBL] [Abstract][Full Text] [Related]
17. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Luo C; Shen Z; Lou L; Li X Environ Pollut; 2006 Dec; 144(3):862-71. PubMed ID: 16616805 [TBL] [Abstract][Full Text] [Related]
18. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil. Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012 [TBL] [Abstract][Full Text] [Related]
19. Leaching characteristics of EDTA-enhanced phytoextraction of Cd and Pb by Zea mays L. in different particle-size fractions of soil aggregates exposed to artificial rain. Lu Y; Luo D; Lai A; Liu G; Liu L; Long J; Zhang H; Chen Y Environ Sci Pollut Res Int; 2017 Jan; 24(2):1845-1853. PubMed ID: 27796994 [TBL] [Abstract][Full Text] [Related]
20. Chelant-assisted phytoextraction and accumulation of Zn by Zea mays. Gheju M; Stelescu I J Environ Manage; 2013 Oct; 128():631-6. PubMed ID: 23845956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]