BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 33312953)

  • 1. Immune Adaptation of Colorectal Cancer Stem Cells and Their Interaction With the Tumor Microenvironment.
    Lin CC; Liao TT; Yang MH
    Front Oncol; 2020; 10():588542. PubMed ID: 33312953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer.
    Hwang WL; Lan HY; Cheng WC; Huang SC; Yang MH
    J Hematol Oncol; 2019 Jan; 12(1):10. PubMed ID: 30683126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer Stem Cells in Colorectal Cancer: Implications for Targeted Immunotherapies.
    Jalil AT; Abdulhadi MA; Al Jawadri AMH; Talib HA; Al-Azzawi AKJ; Zabibah RS; Ali A
    J Gastrointest Cancer; 2023 Dec; 54(4):1046-1057. PubMed ID: 37247115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunomodulatory nanomedicine for colorectal cancer treatment: a landscape to be explored?
    Silveira MJ; Castro F; Oliveira MJ; Sarmento B
    Biomater Sci; 2021 May; 9(9):3228-3243. PubMed ID: 33949441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The response of PIK3CA/KRAS-mutant colorectal cancer stem-like cells to RGD-peptide FraC produced by the strawberry anemone: A promising water-soluble peptide-based inhibitor of metastasis-driver gene CXCR4, stem cell regulatory genes and self-renewal.
    Sarkhosh-Inanlou R; Imani M; Sam MR
    Biomed Pharmacother; 2020 Dec; 132():110807. PubMed ID: 33068939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unveiling the immune symphony: decoding colorectal cancer metastasis through immune interactions.
    He R; Huang S; Lu J; Su L; Gao X; Chi H
    Front Immunol; 2024; 15():1362709. PubMed ID: 38415252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Immunotherapy: Promising Approach to Treat Metastatic Colorectal Cancer by Targeting Resistant Cancer Cells or Cancer Stem Cells.
    Forster S; Radpour R
    Front Oncol; 2020; 10():569017. PubMed ID: 33240813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy.
    Bhat AA; Nisar S; Singh M; Ashraf B; Masoodi T; Prasad CP; Sharma A; Maacha S; Karedath T; Hashem S; Yasin SB; Bagga P; Reddy R; Frennaux MP; Uddin S; Dhawan P; Haris M; Macha MA
    Cancer Commun (Lond); 2022 Aug; 42(8):689-715. PubMed ID: 35791509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidirectional Crosstalk Between Cancer Stem Cells and Immune Cell Subsets.
    Müller L; Tunger A; Plesca I; Wehner R; Temme A; Westphal D; Meier F; Bachmann M; Schmitz M
    Front Immunol; 2020; 11():140. PubMed ID: 32117287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RAB27B-activated secretion of stem-like tumor exosomes delivers the biomarker microRNA-146a-5p, which promotes tumorigenesis and associates with an immunosuppressive tumor microenvironment in colorectal cancer.
    Cheng WC; Liao TT; Lin CC; Yuan LE; Lan HY; Lin HH; Teng HW; Chang HC; Lin CH; Yang CY; Huang SC; Jiang JK; Yang SH; Yang MH; Hwang WL
    Int J Cancer; 2019 Oct; 145(8):2209-2224. PubMed ID: 30980673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The microRNA-210-Stathmin1 Axis Decreases Cell Stiffness to Facilitate the Invasiveness of Colorectal Cancer Stem Cells.
    Liao TT; Cheng WC; Yang CY; Chen YQ; Su SH; Yeh TY; Lan HY; Lee CC; Lin HH; Lin CC; Lu RH; Chiou AE; Jiang JK; Hwang WL
    Cancers (Basel); 2021 Apr; 13(8):. PubMed ID: 33921319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of immunotherapy efficacy and immunomodulatory role of hypoxia in colorectal cancer.
    Zheng Z; Bian C; Wang H; Su J; Meng L; Xin Y; Jiang X
    Ther Adv Med Oncol; 2022; 14():17588359221138383. PubMed ID: 36425871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunosuppressive cells in tumor immune escape and metastasis.
    Liu Y; Cao X
    J Mol Med (Berl); 2016 May; 94(5):509-22. PubMed ID: 26689709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesenchymal stromal cells (MSCs) and colorectal cancer: a troublesome twosome for the anti-tumour immune response?
    O'Malley G; Heijltjes M; Houston AM; Rani S; Ritter T; Egan LJ; Ryan AE
    Oncotarget; 2016 Sep; 7(37):60752-60774. PubMed ID: 27542276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pi (Spleen)-deficiency syndrome in tumor microenvironment is the pivotal pathogenesis of colorectal cancer immune escape.
    Sun XG; Lin XC; Diao JX; Yu ZL; Li K
    Chin J Integr Med; 2016 Oct; 22(10):789-94. PubMed ID: 26556710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Crosstalk Between Tumor Cells and the Immune Microenvironment in Breast Cancer: Implications for Immunotherapy.
    Salemme V; Centonze G; Cavallo F; Defilippi P; Conti L
    Front Oncol; 2021; 11():610303. PubMed ID: 33777750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LncRNAs, the Molecules Involved in Communications With Colorectal Cancer Stem Cells.
    Fan B; Zhang Q; Wang N; Wang G
    Front Oncol; 2022; 12():811374. PubMed ID: 35155247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor-Infiltrating Immunosuppressive Cells in Cancer-Cell Plasticity, Tumor Progression and Therapy Response.
    Lorenzo-Sanz L; Muñoz P
    Cancer Microenviron; 2019 Dec; 12(2-3):119-132. PubMed ID: 31583529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy.
    Gao S; Yang D; Fang Y; Lin X; Jin X; Wang Q; Wang X; Ke L; Shi K
    Theranostics; 2019; 9(1):126-151. PubMed ID: 30662558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor Microenvironment and Nitric Oxide: Concepts and Mechanisms.
    Vedenko A; Panara K; Goldstein G; Ramasamy R; Arora H
    Adv Exp Med Biol; 2020; 1277():143-158. PubMed ID: 33119871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.