BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 33312955)

  • 1. Multifaceted WNT Signaling at the Crossroads Between Epithelial-Mesenchymal Transition and Autophagy in Glioblastoma.
    Coelho BP; Fernandes CFL; Boccacino JM; Souza MCDS; Melo-Escobar MI; Alves RN; Prado MB; Iglesia RP; Cangiano G; Mazzaro GR; Lopes MH
    Front Oncol; 2020; 10():597743. PubMed ID: 33312955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autophagy induction impairs Wnt/β-catenin signalling through β-catenin relocalisation in glioblastoma cells.
    Colella B; Faienza F; Carinci M; D'Alessandro G; Catalano M; Santoro A; Cecconi F; Limatola C; Di Bartolomeo S
    Cell Signal; 2019 Jan; 53():357-364. PubMed ID: 30442596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long Noncoding RNA LINC-PINT Suppresses Cell Proliferation, Invasion, and EMT by Blocking Wnt/β-Catenin Signaling in Glioblastoma.
    Zhu H; Chen Z; Shen L; Tang T; Yang M; Zheng X
    Front Pharmacol; 2020; 11():586653. PubMed ID: 33505307
    [No Abstract]   [Full Text] [Related]  

  • 4. miR-504 suppresses mesenchymal phenotype of glioblastoma by directly targeting the FZD7-mediated Wnt-β-catenin pathway.
    Liu Q; Guan Y; Li Z; Wang Y; Liu Y; Cui R; Wang Y
    J Exp Clin Cancer Res; 2019 Aug; 38(1):358. PubMed ID: 31419987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMT Regulation by Autophagy: A New Perspective in Glioblastoma Biology.
    Colella B; Faienza F; Di Bartolomeo S
    Cancers (Basel); 2019 Mar; 11(3):. PubMed ID: 30845654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Bevacizumab-induced Epithelial-Mesenchymal Transition by BATF2 Overexpression Involves the Suppression of Wnt/β-Catenin Signaling in Glioblastoma Cells.
    Huang W; Zhang C; Cui M; Niu J; Ding W
    Anticancer Res; 2017 Aug; 37(8):4285-4294. PubMed ID: 28739720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GOLM1 silencing inhibits the proliferation and motility of human glioblastoma cells via the Wnt/β-catenin signaling pathway.
    Ding X; Deng G; Liu J; Liu B; Yuan F; Yang X; Chen Q
    Brain Res; 2019 Aug; 1717():117-126. PubMed ID: 30935831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autophagy induction impairs migration and invasion by reversing EMT in glioblastoma cells.
    Catalano M; D'Alessandro G; Lepore F; Corazzari M; Caldarola S; Valacca C; Faienza F; Esposito V; Limatola C; Cecconi F; Di Bartolomeo S
    Mol Oncol; 2015 Oct; 9(8):1612-25. PubMed ID: 26022108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HMGB1-Induced p62 Overexpression Promotes Snail-Mediated Epithelial-Mesenchymal Transition in Glioblastoma Cells via the Degradation of GSK-3β.
    Li H; Li J; Zhang G; Da Q; Chen L; Yu S; Zhou Q; Weng Z; Xin Z; Shi L; Ma L; Huang A; Qi S; Lu Y
    Theranostics; 2019; 9(7):1909-1922. PubMed ID: 31037147
    [No Abstract]   [Full Text] [Related]  

  • 10. A double-negative feedback loop between Wnt-β-catenin signaling and HNF4α regulates epithelial-mesenchymal transition in hepatocellular carcinoma.
    Yang M; Li SN; Anjum KM; Gui LX; Zhu SS; Liu J; Chen JK; Liu QF; Ye GD; Wang WJ; Wu JF; Cai WY; Sun GB; Liu YJ; Liu RF; Zhang ZM; Li BA
    J Cell Sci; 2013 Dec; 126(Pt 24):5692-703. PubMed ID: 24101726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MIR517C inhibits autophagy and the epithelial-to-mesenchymal (-like) transition phenotype in human glioblastoma through KPNA2-dependent disruption of TP53 nuclear translocation.
    Lu Y; Xiao L; Liu Y; Wang H; Li H; Zhou Q; Pan J; Lei B; Huang A; Qi S
    Autophagy; 2015; 11(12):2213-32. PubMed ID: 26553592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autophagy and the Wnt signaling pathway: A focus on Wnt/β-catenin signaling.
    Lorzadeh S; Kohan L; Ghavami S; Azarpira N
    Biochim Biophys Acta Mol Cell Res; 2021 Mar; 1868(3):118926. PubMed ID: 33316295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Theoretical Model of the Wnt Signaling Pathway in the Epithelial Mesenchymal Transition.
    Gasior K; Hauck M; Wilson A; Bhattacharya S
    Theor Biol Med Model; 2017 Oct; 14(1):19. PubMed ID: 28992816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Tumor Cells Choose Between Epithelial-Mesenchymal Transition and Autophagy to Resist Stress-Therapeutic Implications.
    Marcucci F; Rumio C
    Front Pharmacol; 2018; 9():714. PubMed ID: 30013478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of WNT-CTNNB1 signaling upregulates SQSTM1 and sensitizes glioblastoma cells to autophagy blockers.
    Nàger M; Sallán MC; Visa A; Pushparaj C; Santacana M; Macià A; Yeramian A; Cantí C; Herreros J
    Autophagy; 2018; 14(4):619-636. PubMed ID: 29313411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ING5 inhibits lung cancer invasion and epithelial-mesenchymal transition by inhibiting the WNT/β-catenin pathway.
    Liu XL; Meng J; Zhang XT; Liang XH; Zhang F; Zhao GR; Zhang T
    Thorac Cancer; 2019 Apr; 10(4):848-855. PubMed ID: 30810286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear phosphorylated Y142 β-catenin accumulates in astrocytomas and glioblastomas and regulates cell invasion.
    Náger M; Santacana M; Bhardwaj D; Valls J; Ferrer I; Nogués P; Cantí C; Herreros J
    Cell Cycle; 2015; 14(22):3644-55. PubMed ID: 26654598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metastasis suppressor CD82/KAI1 represses the TGF-β
    Lee MS; Lee J; Kim YM; Lee H
    Prostate; 2019 Sep; 79(12):1400-1411. PubMed ID: 31212375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The critical role of EGF-β-catenin signaling in the epithelial-mesenchymal transition in human glioblastoma.
    Wang X; Wang S; Li X; Jin S; Xiong F; Wang X
    Onco Targets Ther; 2017; 10():2781-2789. PubMed ID: 28615958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BYSL Promotes Glioblastoma Cell Migration, Invasion, and Mesenchymal Transition Through the GSK-3β/β-Catenin Signaling Pathway.
    Sha Z; Zhou J; Wu Y; Zhang T; Li C; Meng Q; Musunuru PP; You F; Wu Y; Yu R; Gao S
    Front Oncol; 2020; 10():565225. PubMed ID: 33178594
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 19.