These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 33313390)

  • 1. Computational-Based Design of Hydrogels with Predictable Mesh Properties.
    Campbell KT; Wysoczynski K; Hadley DJ; Silva EA
    ACS Biomater Sci Eng; 2020 Jan; 6(1):308-319. PubMed ID: 33313390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable fibrin-alginate interpenetrating network hydrogels to support cell spreading and network formation.
    Vorwald CE; Gonzalez-Fernandez T; Joshee S; Sikorski P; Leach JK
    Acta Biomater; 2020 May; 108():142-152. PubMed ID: 32173582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatically degradable alginate hydrogel systems to deliver endothelial progenitor cells for potential revasculature applications.
    Campbell KT; Stilhano RS; Silva EA
    Biomaterials; 2018 Oct; 179():109-121. PubMed ID: 29980073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solute diffusion and partitioning in multi-arm poly(ethylene glycol) hydrogels.
    Richbourg NR; Peppas NA
    J Mater Chem B; 2023 Jan; 11(2):377-388. PubMed ID: 36511476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selectively Cross-Linked Tetra-PEG Hydrogels Provide Control over Mechanical Strength with Minimal Impact on Diffusivity.
    Lust ST; Hoogland D; Norman MDA; Kerins C; Omar J; Jowett GM; Yu TTL; Yan Z; Xu JZ; Marciano D; da Silva RMP; Dreiss CA; Lamata P; Shipley RJ; Gentleman E
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4293-4304. PubMed ID: 34151570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural aspects controlling the mechanical and biological properties of tough, double network hydrogels.
    Huang Y; Jayathilaka PB; Islam MS; Tanaka CB; Silberstein MN; Kilian KA; Kruzic JJ
    Acta Biomater; 2022 Jan; 138():301-312. PubMed ID: 34757233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thaw-Induced Gelation of Alginate Hydrogels for Versatile Delivery of Therapeutics.
    Hadley DJ; Silva EA
    Ann Biomed Eng; 2019 Aug; 47(8):1701-1710. PubMed ID: 31044339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
    Kuo CK; Ma PX
    J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of alginate backbone on efficacy of thermo-responsive alginate-g-P(NIPAAm) hydrogel as a vehicle for sustained and controlled gene delivery.
    Chalanqui MJ; Pentlavalli S; McCrudden C; Chambers P; Ziminska M; Dunne N; McCarthy HO
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():409-421. PubMed ID: 30573265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alginate/poly(amidoamine) injectable hybrid hydrogel for cell delivery.
    Patil SS; Nune KC; Misra R
    J Biomater Appl; 2018 Aug; 33(2):295-314. PubMed ID: 30096996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications.
    Giri TK; Thakur D; Alexander A; Ajazuddin ; Badwaik H; Tripathi DK
    Curr Drug Deliv; 2012 Nov; 9(6):539-55. PubMed ID: 22998675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials.
    Chan AW; Neufeld RJ
    Biomaterials; 2009 Oct; 30(30):6119-29. PubMed ID: 19660810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size.
    Browning MB; Wilems T; Hahn M; Cosgriff-Hernandez E
    J Biomed Mater Res A; 2011 Aug; 98(2):268-73. PubMed ID: 21626658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alginate hydrogels of varied molecular weight distribution enable sustained release of sphingosine-1-phosphate and promote angiogenesis.
    Williams PA; Campbell KT; Silva EA
    J Biomed Mater Res A; 2018 Jan; 106(1):138-146. PubMed ID: 28875559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical spectroscopy and relaxometry on alginate hydrogels: a comparative analysis for structural characterization and network mesh size determination.
    Turco G; Donati I; Grassi M; Marchioli G; Lapasin R; Paoletti S
    Biomacromolecules; 2011 Apr; 12(4):1272-82. PubMed ID: 21381704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring the dependency between rigidity and water uptake of a microfabricated hydrogel with the conformational rigidity of a polymer cross-linker.
    Schmidt JJ; Jeong JH; Chan V; Cha C; Baek K; Lai MH; Bashir R; Kong H
    Biomacromolecules; 2013 May; 14(5):1361-9. PubMed ID: 23517437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastic, superporous hydrogel hybrids of polyacrylamide and sodium alginate.
    Omidian H; Rocca JG; Park K
    Macromol Biosci; 2006 Sep; 6(9):703-10. PubMed ID: 16967483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Synthesis of RGD-functionalized Hydrogels as a Tool for Therapeutic Applications.
    Mauri E; Sacchetti A; Rossi F
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27768038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mutual effect of the crosslinker and biopolymer concentration on the desired hydrogel properties.
    Kopač T; Ručigaj A; Krajnc M
    Int J Biol Macromol; 2020 Sep; 159():557-569. PubMed ID: 32422268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein diffusion characteristics in the hydrogels of poly(ethylene glycol) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA).
    Wu J; Xiao Z; He C; Zhu J; Ma G; Wang G; Zhang H; Xiao J; Chen S
    Acta Biomater; 2016 Aug; 40():172-181. PubMed ID: 27142255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.