These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33313394)

  • 1. Optimizing Anisotropic Polyurethane Scaffolds to Mechanically Match with Native Myocardium.
    Xu C; Okpokwasili C; Huang Y; Shi X; Wu J; Liao J; Tang L; Hong Y
    ACS Biomater Sci Eng; 2020 May; 6(5):2757-2769. PubMed ID: 33313394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration.
    Xu C; Huang Y; Tang L; Hong Y
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2169-2180. PubMed ID: 28036169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing collagen scaffold compliance with native myocardial strains using an ex-vivo cardiac model: The physio-mechanical influence of scaffold architecture and attachment method.
    Cyr JA; Burdett C; Pürstl JT; Thompson RP; Troughton SC; Sinha S; Best SM; Cameron RE
    Acta Biomater; 2024 Aug; 184():239-253. PubMed ID: 38942187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold.
    Hong Y; Huber A; Takanari K; Amoroso NJ; Hashizume R; Badylak SF; Wagner WR
    Biomaterials; 2011 May; 32(13):3387-94. PubMed ID: 21303718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction.
    Efraim Y; Sarig H; Cohen Anavy N; Sarig U; de Berardinis E; Chaw SY; Krishnamoorthi M; Kalifa J; Bogireddi H; Duc TV; Kofidis T; Baruch L; Boey FYC; Venkatraman SS; Machluf M
    Acta Biomater; 2017 Mar; 50():220-233. PubMed ID: 27956366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastase-sensitive elastomeric scaffolds with variable anisotropy for soft tissue engineering.
    Guan J; Fujimoto KL; Wagner WR
    Pharm Res; 2008 Oct; 25(10):2400-12. PubMed ID: 18509596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.
    Chan JP; Battiston KG; Santerre JP
    Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling.
    Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N
    Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic myocardial patches fabricated with poly(ɛ-caprolactone) and polyethylene glycol-based polyurethanes.
    Silvestri A; Sartori S; Boffito M; Mattu C; Di Rienzo AM; Boccafoschi F; Ciardelli G
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):1002-13. PubMed ID: 24307433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An elastomeric patch electrospun from a blended solution of dermal extracellular matrix and biodegradable polyurethane for rat abdominal wall repair.
    Hong Y; Takanari K; Amoroso NJ; Hashizume R; Brennan-Pierce EP; Freund JM; Badylak SF; Wagner WR
    Tissue Eng Part C Methods; 2012 Feb; 18(2):122-32. PubMed ID: 21933017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic engineering of the cardiac tissue through processing, functionalization, and biological characterization of polyester urethanes.
    Vozzi F; Logrand F; Cabiati M; Cicione C; Boffito M; Carmagnola I; Vitale N; Gori M; Brancaccio M; Del Ry S; Gastaldi D; Cattarinuzzi E; Vena P; Rainer A; Domenici C; Ciardelli G; Sartori S
    Biomed Mater; 2018 Jul; 13(5):055006. PubMed ID: 29869614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A composite scaffold fabricated with an acellular matrix and biodegradable polyurethane for the in vivo regeneration of pig bile duct defects.
    Jiang X; Xiong X; Lin Y; Lu Y; Cheng J; Cheng N; Zhang J
    Acta Biomater; 2022 Sep; 150():238-253. PubMed ID: 35882348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bi-layered polyurethane - Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model.
    D'Amore A; Yoshizumi T; Luketich SK; Wolf MT; Gu X; Cammarata M; Hoff R; Badylak SF; Wagner WR
    Biomaterials; 2016 Nov; 107():1-14. PubMed ID: 27579776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation.
    Ganji Y; Li Q; Quabius ES; Böttner M; Selhuber-Unkel C; Kasra M
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():10-18. PubMed ID: 26652343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wet-Spun Polycaprolactone Scaffolds Provide Customizable Anisotropic Viscoelastic Mechanics for Engineered Cardiac Tissues.
    Schmitt PR; Dwyer KD; Minor AJ; Coulombe KLK
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair.
    McDevitt TC; Woodhouse KA; Hauschka SD; Murry CE; Stayton PS
    J Biomed Mater Res A; 2003 Sep; 66(3):586-95. PubMed ID: 12918042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nerve regeneration using tubular scaffolds from biodegradable polyurethane.
    Hausner T; Schmidhammer R; Zandieh S; Hopf R; Schultz A; Gogolewski S; Hertz H; Redl H
    Acta Neurochir Suppl; 2007; 100():69-72. PubMed ID: 17985549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic characterization of porosity and mass transport and mechanical properties of porous polyurethane scaffolds.
    Wang YF; Barrera CM; Dauer EA; Gu W; Andreopoulos F; Huang CC
    J Mech Behav Biomed Mater; 2017 Jan; 65():657-664. PubMed ID: 27741496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle derived stem cells microintegrated into a biodegradable elastomer for reconstruction of the abdominal wall.
    Takanari K; Hashizume R; Hong Y; Amoroso NJ; Yoshizumi T; Gharaibeh B; Yoshida O; Nonaka K; Sato H; Huard J; Wagner WR
    Biomaterials; 2017 Jan; 113():31-41. PubMed ID: 27810640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering.
    Da L; Gong M; Chen A; Zhang Y; Huang Y; Guo Z; Li S; Li-Ling J; Zhang L; Xie H
    Acta Biomater; 2017 Sep; 59():45-57. PubMed ID: 28528117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.