These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33313460)

  • 41. The relativistic causality versus no-signaling paradigm for multi-party correlations.
    Horodecki P; Ramanathan R
    Nat Commun; 2019 Apr; 10(1):1701. PubMed ID: 30979876
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental Realization of Robust Self-Testing of Bell State Measurements.
    Zhang WH; Chen G; Peng XX; Ye XJ; Yin P; Xu XY; Xu JS; Li CF; Guo GC
    Phys Rev Lett; 2019 Mar; 122(9):090402. PubMed ID: 30932519
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Device-independent quantum randomness-enhanced zero-knowledge proof.
    Li CL; Zhang KY; Zhang X; Yang KX; Han Y; Cheng SY; Cui H; Liu WZ; Li MH; Liu Y; Bai B; Dong HH; Zhang J; Ma X; Yu Y; Fan J; Zhang Q; Pan JW
    Proc Natl Acad Sci U S A; 2023 Nov; 120(45):e2205463120. PubMed ID: 37917793
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres.
    Hensen B; Bernien H; Dréau AE; Reiserer A; Kalb N; Blok MS; Ruitenberg J; Vermeulen RF; Schouten RN; Abellán C; Amaya W; Pruneri V; Mitchell MW; Markham M; Twitchen DJ; Elkouss D; Wehner S; Taminiau TH; Hanson R
    Nature; 2015 Oct; 526(7575):682-6. PubMed ID: 26503041
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantum Steering Inequality with Tolerance for Measurement-Setting Errors: Experimentally Feasible Signature of Unbounded Violation.
    Rutkowski A; Buraczewski A; Horodecki P; Stobińska M
    Phys Rev Lett; 2017 Jan; 118(2):020402. PubMed ID: 28128609
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Provably-secure quantum randomness expansion with uncharacterised homodyne detection.
    Wang C; Primaatmaja IW; Ng HJ; Haw JY; Ho R; Zhang J; Zhang G; Lim C
    Nat Commun; 2023 Jan; 14(1):316. PubMed ID: 36658115
    [TBL] [Abstract][Full Text] [Related]  

  • 47. No Bipartite-Nonlocal Causal Theory Can Explain Nature's Correlations.
    Coiteux-Roy X; Wolfe E; Renou MO
    Phys Rev Lett; 2021 Nov; 127(20):200401. PubMed ID: 34860059
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantum communication complexity advantage implies violation of a Bell inequality.
    Buhrman H; Czekaj Ł; Grudka A; Horodecki M; Horodecki P; Markiewicz M; Speelman F; Strelchuk S
    Proc Natl Acad Sci U S A; 2016 Mar; 113(12):3191-6. PubMed ID: 26957600
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of reduced measurement independence on Bell-based randomness expansion.
    Koh DE; Hall MJ; Setiawan ; Pope JE; Marletto C; Kay A; Scarani V; Ekert A
    Phys Rev Lett; 2012 Oct; 109(16):160404. PubMed ID: 23350071
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multi-bit quantum random number generation by measuring positions of arrival photons.
    Yan Q; Zhao B; Liao Q; Zhou N
    Rev Sci Instrum; 2014 Oct; 85(10):103116. PubMed ID: 25362380
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Weak randomness impacts the security of reference-frame-independent quantum key distribution.
    Zhang CM; Wang WB; Li HW; Wang Q
    Opt Lett; 2019 Mar; 44(5):1226-1229. PubMed ID: 30821754
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Randomness and degrees of irregularity.
    Pincus S; Singer BH
    Proc Natl Acad Sci U S A; 1996 Mar; 93(5):2083-8. PubMed ID: 11607637
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Setting Up Experimental Bell Tests with Reinforcement Learning.
    Melnikov AA; Sekatski P; Sangouard N
    Phys Rev Lett; 2020 Oct; 125(16):160401. PubMed ID: 33124877
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental Measurement-Device-Independent Quantum Steering and Randomness Generation Beyond Qubits.
    Guo Y; Cheng S; Hu X; Liu BH; Huang EM; Huang YF; Li CF; Guo GC; Cavalcanti EG
    Phys Rev Lett; 2019 Oct; 123(17):170402. PubMed ID: 31702255
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Single-System-Based Generation of Certified Randomness Using Leggett-Garg Inequality.
    Nath PP; Saha D; Home D; Sinha U
    Phys Rev Lett; 2024 Jul; 133(2):020802. PubMed ID: 39073947
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantum Complementarity Approach to Device-Independent Security.
    Zhang X; Zeng P; Ye T; Lo HK; Ma X
    Phys Rev Lett; 2023 Oct; 131(14):140801. PubMed ID: 37862656
    [TBL] [Abstract][Full Text] [Related]  

  • 57. True Randomness from Big Data.
    Papakonstantinou PA; Woodruff DP; Yang G
    Sci Rep; 2016 Sep; 6():33740. PubMed ID: 27666514
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Measurement-induced randomness and structure in controlled qubit processes.
    Venegas-Li AE; Jurgens AM; Crutchfield JP
    Phys Rev E; 2020 Oct; 102(4-1):040102. PubMed ID: 33212600
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-Dimensional Quantum Communication Complexity beyond Strategies Based on Bell's Theorem.
    Martínez D; Tavakoli A; Casanova M; Cañas G; Marques B; Lima G
    Phys Rev Lett; 2018 Oct; 121(15):150504. PubMed ID: 30362799
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparing random states and benchmarking with many-body quantum chaos.
    Choi J; Shaw AL; Madjarov IS; Xie X; Finkelstein R; Covey JP; Cotler JS; Mark DK; Huang HY; Kale A; Pichler H; Brandão FGSL; Choi S; Endres M
    Nature; 2023 Jan; 613(7944):468-473. PubMed ID: 36653567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.