These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 33313491)
1. Pushing the Eenvelope in Battery Estimation Algorithms. Allam A; Catenaro E; Onori S iScience; 2020 Dec; 23(12):101847. PubMed ID: 33313491 [TBL] [Abstract][Full Text] [Related]
2. State of Charge Estimation of Li-Ion Battery Based on Adaptive Sliding Mode Observer. Wang Q; Jiang J; Gao T; Ren S Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236777 [TBL] [Abstract][Full Text] [Related]
3. Estimation of Online State of Charge and State of Health Based on Neural Network Model Banks Using Lithium Batteries. Lee JH; Lee IS Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898040 [TBL] [Abstract][Full Text] [Related]
4. State of charge estimation for lithium-ion battery based on whale optimization algorithm and multi-kernel relevance vector machine. Chen K; Zhou S; Liu K; Gao G; Wu G J Chem Phys; 2023 Mar; 158(10):104110. PubMed ID: 36922144 [TBL] [Abstract][Full Text] [Related]
5. A Learning-Based Vehicle-Cloud Collaboration Approach for Joint Estimation of State-of-Energy and State-of-Health. Mei P; Karimi HR; Chen F; Yang S; Huang C; Qiu S Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502177 [TBL] [Abstract][Full Text] [Related]
6. Improving accuracy in state of health estimation for lithium batteries using gradient-based optimization: Case study in electric vehicle applications. El Marghichi M; Dangoury S; Zahrou Y; Loulijat A; Chojaa H; Banakhr FA; Mosaad MI PLoS One; 2023; 18(11):e0293753. PubMed ID: 37917753 [TBL] [Abstract][Full Text] [Related]
7. State of Charge Estimation of Battery Based on Neural Networks and Adaptive Strategies with Correntropy. Navega Vieira R; Mauricio Villanueva JM; Sales Flores TK; Tavares de MacĂȘdo EC Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161925 [TBL] [Abstract][Full Text] [Related]
8. Stable and Accurate Estimation of SOC Using eXogenous Kalman Filter for Lithium-Ion Batteries. Lin Q; Li X; Tu B; Cao J; Zhang M; Xiang J Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617064 [TBL] [Abstract][Full Text] [Related]
9. A Battery SOC Estimation Method Based on AFFRLS-EKF. Li M; Zhang Y; Hu Z; Zhang Y; Zhang J Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502587 [TBL] [Abstract][Full Text] [Related]
10. Dataset for rapid state of health estimation of lithium batteries using EIS and machine learning: Training and validation. Rashid M; Faraji-Niri M; Sansom J; Sheikh M; Widanage D; Marco J Data Brief; 2023 Jun; 48():109157. PubMed ID: 37383794 [TBL] [Abstract][Full Text] [Related]
11. A Sensor-Fault-Estimation Method for Lithium-Ion Batteries in Electric Vehicles. Lan T; Gao ZW; Yin H; Liu Y Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765794 [TBL] [Abstract][Full Text] [Related]
12. Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis. Wang F; Zhai Z; Zhao Z; Di Y; Chen X Nat Commun; 2024 May; 15(1):4332. PubMed ID: 38773131 [TBL] [Abstract][Full Text] [Related]
13. State of charge estimation of lithium-ion batteries using fractional order sliding mode observer. Zhong Q; Zhong F; Cheng J; Li H; Zhong S ISA Trans; 2017 Jan; 66():448-459. PubMed ID: 27751516 [TBL] [Abstract][Full Text] [Related]
14. A remaining useful life estimation method based on long short-term memory and federated learning for electric vehicles in smart cities. Chen X; Chen Z; Zhang M; Wang Z; Liu M; Fu M; Wang P PeerJ Comput Sci; 2023; 9():e1652. PubMed ID: 38077580 [TBL] [Abstract][Full Text] [Related]
15. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles. Xu J; Wang J; Li S; Cao B Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548183 [TBL] [Abstract][Full Text] [Related]
16. Toward Enhanced State of Charge Estimation of Lithium-ion Batteries Using Optimized Machine Learning Techniques. Hannan MA; Lipu MSH; Hussain A; Ker PJ; Mahlia TMI; Mansor M; Ayob A; Saad MH; Dong ZY Sci Rep; 2020 Mar; 10(1):4687. PubMed ID: 32170100 [TBL] [Abstract][Full Text] [Related]
17. Development of dual polarization battery model with high accuracy for a lithium-ion battery cell under dynamic driving cycle conditions. Tekin M; Karamangil MI Heliyon; 2024 Apr; 10(7):e28454. PubMed ID: 38571645 [TBL] [Abstract][Full Text] [Related]
18. Monitoring state of charge and volume expansion in lithium-ion batteries: an approach using surface mounted thin-film graphene sensors. Bree G; Hao H; Stoeva Z; John Low CT RSC Adv; 2023 Feb; 13(10):7045-7054. PubMed ID: 36874940 [TBL] [Abstract][Full Text] [Related]
19. A simulation-driven prediction model for state of charge estimation of electric vehicle lithium battery. Zhang J; Song C; Xiang J Heliyon; 2024 May; 10(10):e30988. PubMed ID: 38770289 [TBL] [Abstract][Full Text] [Related]
20. Fire Tests on E-vehicle Battery Cells and Packs. Sturk D; Hoffmann L; Ahlberg Tidblad A Traffic Inj Prev; 2015; 16 Suppl 1():S159-64. PubMed ID: 25714114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]