BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33313535)

  • 1. An Exploration of Deep-Learning Based Phenotypic Analysis to Detect Spike Regions in Field Conditions for UK Bread Wheat.
    Alkhudaydi T; Reynolds D; Griffiths S; Zhou J; de la Iglesia B
    Plant Phenomics; 2019; 2019():7368761. PubMed ID: 33313535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection and analysis of wheat spikes using Convolutional Neural Networks.
    Hasan MM; Chopin JP; Laga H; Miklavcic SJ
    Plant Methods; 2018; 14():100. PubMed ID: 30459822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CropQuant-Air: an AI-powered system to enable phenotypic analysis of yield- and performance-related traits using wheat canopy imagery collected by low-cost drones.
    Chen J; Zhou J; Li Q; Li H; Xia Y; Jackson R; Sun G; Zhou G; Deakin G; Jiang D; Zhou J
    Front Plant Sci; 2023; 14():1219983. PubMed ID: 37404534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging.
    Misra T; Arora A; Marwaha S; Chinnusamy V; Rao AR; Jain R; Sahoo RN; Ray M; Kumar S; Raju D; Jha RR; Nigam A; Goel S
    Plant Methods; 2020; 16():40. PubMed ID: 32206080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmentation and counting of wheat spike grains based on deep learning and textural feature.
    Xu X; Geng Q; Gao F; Xiong D; Qiao H; Ma X
    Plant Methods; 2023 Aug; 19(1):77. PubMed ID: 37528413
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Sadeghi-Tehran P; Virlet N; Ampe EM; Reyns P; Hawkesford MJ
    Front Plant Sci; 2019; 10():1176. PubMed ID: 31616456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic Detection and Counting of Wheat Spikelet Using Semi-Automatic Labeling and Deep Learning.
    Qiu R; He Y; Zhang M
    Front Plant Sci; 2022; 13():872555. PubMed ID: 35707612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wheat Spike Detection and Counting in the Field Based on SpikeRetinaNet.
    Wen C; Wu J; Chen H; Su H; Chen X; Li Z; Yang C
    Front Plant Sci; 2022; 13():821717. PubMed ID: 35310650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wheat-Net: An Automatic Dense Wheat Spike Segmentation Method Based on an Optimized Hybrid Task Cascade Model.
    Zhang J; Min A; Steffenson BJ; Su WH; Hirsch CD; Anderson J; Wei J; Ma Q; Yang C
    Front Plant Sci; 2022; 13():834938. PubMed ID: 35222491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image-based classification of wheat spikes by glume pubescence using convolutional neural networks.
    Artemenko NV; Genaev MA; Epifanov RU; Komyshev EG; Kruchinina YV; Koval VS; Goncharov NP; Afonnikov DA
    Front Plant Sci; 2023; 14():1336192. PubMed ID: 38283969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wheat Spike Blast Image Classification Using Deep Convolutional Neural Networks.
    Fernández-Campos M; Huang YT; Jahanshahi MR; Wang T; Jin J; Telenko DEP; Góngora-Canul C; Cruz CD
    Front Plant Sci; 2021; 12():673505. PubMed ID: 34220894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Recognition of Field-Grown Wheat Spikes Based on a Superpixel Segmentation Algorithm Using Digital Images.
    Tan C; Zhang P; Zhang Y; Zhou X; Wang Z; Du Y; Mao W; Li W; Wang D; Guo W
    Front Plant Sci; 2020; 11():259. PubMed ID: 32211011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput phenotyping with deep learning gives insight into the genetic architecture of flowering time in wheat.
    Wang X; Xuan H; Evers B; Shrestha S; Pless R; Poland J
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31742599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic modification of spikelet arrangement in wheat increases grain number without significantly affecting grain weight.
    Wolde GM; Mascher M; Schnurbusch T
    Mol Genet Genomics; 2019 Apr; 294(2):457-468. PubMed ID: 30591960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SlypNet: Spikelet-based yield prediction of wheat using advanced plant phenotyping and computer vision techniques.
    Maji AK; Marwaha S; Kumar S; Arora A; Chinnusamy V; Islam S
    Front Plant Sci; 2022; 13():889853. PubMed ID: 35991448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Branching Shoots and Spikes from Lateral Meristems in Bread Wheat.
    Wang Y; Miao F; Yan L
    PLoS One; 2016; 11(3):e0151656. PubMed ID: 26986738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide and SNP network analyses reveal genetic control of spikelet sterility and yield-related traits in wheat.
    Alqudah AM; Haile JK; Alomari DZ; Pozniak CJ; Kobiljski B; Börner A
    Sci Rep; 2020 Feb; 10(1):2098. PubMed ID: 32034248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semantic Segmentation of Building Roof in Dense Urban Environment with Deep Convolutional Neural Network: A Case Study Using GF2 VHR Imagery in China.
    Qin Y; Wu Y; Li B; Gao S; Liu M; Zhan Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30866539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WheatSpikeNet: an improved wheat spike segmentation model for accurate estimation from field imaging.
    Batin MA; Islam M; Hasan MM; Azad A; Alyami SA; Hossain MA; Miklavcic SJ
    Front Plant Sci; 2023; 14():1226190. PubMed ID: 37692423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Outdoor Plant Segmentation With Deep Learning for High-Throughput Field Phenotyping on a Diverse Wheat Dataset.
    Zenkl R; Timofte R; Kirchgessner N; Roth L; Hund A; Van Gool L; Walter A; Aasen H
    Front Plant Sci; 2021; 12():774068. PubMed ID: 35058948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.