BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33313542)

  • 1. MVS-Pheno: A Portable and Low-Cost Phenotyping Platform for Maize Shoots Using Multiview Stereo 3D Reconstruction.
    Wu S; Wen W; Wang Y; Fan J; Wang C; Gou W; Guo X
    Plant Phenomics; 2020; 2020():1848437. PubMed ID: 33313542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A miniaturized phenotyping platform for individual plants using multi-view stereo 3D reconstruction.
    Wu S; Wen W; Gou W; Lu X; Zhang W; Zheng C; Xiang Z; Chen L; Guo X
    Front Plant Sci; 2022; 13():897746. PubMed ID: 36003825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations.
    Hui F; Zhu J; Hu P; Meng L; Zhu B; Guo Y; Li B; Ma Y
    Ann Bot; 2018 Apr; 121(5):1079-1088. PubMed ID: 29509841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using high-throughput phenotype platform MVS-Pheno to reconstruct the 3D morphological structure of wheat.
    Li W; Wu S; Wen W; Lu X; Liu H; Zhang M; Xiao P; Guo X; Zhao C
    AoB Plants; 2024 Feb; 16(2):plae019. PubMed ID: 38660049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LiDARPheno - A Low-Cost LiDAR-Based 3D Scanning System for Leaf Morphological Trait Extraction.
    Panjvani K; Dinh AV; Wahid KA
    Front Plant Sci; 2019; 10():147. PubMed ID: 30815008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Accurate Skeleton Extraction Approach From 3D Point Clouds of Maize Plants.
    Wu S; Wen W; Xiao B; Guo X; Du J; Wang C; Wang Y
    Front Plant Sci; 2019; 10():248. PubMed ID: 30899271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes.
    Duan T; Chapman SC; Holland E; Rebetzke GJ; Guo Y; Zheng B
    J Exp Bot; 2016 Aug; 67(15):4523-34. PubMed ID: 27312669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Modeling of Weed Plants Using Low-Cost Photogrammetry.
    Andújar D; Calle M; Fernández-Quintanilla C; Ribeiro Á; Dorado J
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Source Data Fusion Improves Time-Series Phenotype Accuracy in Maize under a Field High-Throughput Phenotyping Platform.
    Li Y; Wen W; Fan J; Gou W; Gu S; Lu X; Yu Z; Wang X; Guo X
    Plant Phenomics; 2023; 5():0043. PubMed ID: 37223316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level.
    Rose JC; Paulus S; Kuhlmann H
    Sensors (Basel); 2015 Apr; 15(5):9651-65. PubMed ID: 25919368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PocketMaize: An Android-Smartphone Application for Maize Plant Phenotyping.
    Liu L; Yu L; Wu D; Ye J; Feng H; Liu Q; Yang W
    Front Plant Sci; 2021; 12():770217. PubMed ID: 34899792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel 3D imaging system for strawberry phenotyping.
    He JQ; Harrison RJ; Li B
    Plant Methods; 2017; 13():93. PubMed ID: 29176998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging Image Analysis to Compute 3D Plant Phenotypes Based on Voxel-Grid Plant Reconstruction.
    Das Choudhury S; Maturu S; Samal A; Stoerger V; Awada T
    Front Plant Sci; 2020; 11():521431. PubMed ID: 33362806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
    Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C
    Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput phenotyping analysis of maize at the seedling stage using end-to-end segmentation network.
    Li Y; Wen W; Guo X; Yu Z; Gu S; Yan H; Zhao C
    PLoS One; 2021; 16(1):e0241528. PubMed ID: 33434222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel way to validate UAS-based high-throughput phenotyping protocols using in silico experiments for plant breeding purposes.
    Galli G; Sabadin F; Costa-Neto GMF; Fritsche-Neto R
    Theor Appl Genet; 2021 Feb; 134(2):715-730. PubMed ID: 33216217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The platform
    Nagel KA; Lenz H; Kastenholz B; Gilmer F; Averesch A; Putz A; Heinz K; Fischbach A; Scharr H; Fiorani F; Walter A; Schurr U
    Plant Methods; 2020; 16():89. PubMed ID: 32582364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel LiDAR-Based Instrument for High-Throughput, 3D Measurement of Morphological Traits in Maize and Sorghum.
    Thapa S; Zhu F; Walia H; Yu H; Ge Y
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29652788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic detection of three-dimensional crop phenotypes based on a consumer-grade RGB-D camera.
    Song P; Li Z; Yang M; Shao Y; Pu Z; Yang W; Zhai R
    Front Plant Sci; 2023; 14():1097725. PubMed ID: 36778701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.