These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 33313544)
21. Inventory of tools for Dutch clinical language processing. Cornet R; Van Eldik A; De Keizer N Stud Health Technol Inform; 2012; 180():245-9. PubMed ID: 22874189 [TBL] [Abstract][Full Text] [Related]
22. From computing with numbers to computing with words. From manipulation of measurements to manipulation of perceptions. Zadeh LA Ann N Y Acad Sci; 2001 Apr; 929():221-52. PubMed ID: 11357866 [TBL] [Abstract][Full Text] [Related]
23. Moving the mountain: analysis of the effort required to transform comparative anatomy into computable anatomy. Dahdul W; Dececchi TA; Ibrahim N; Lapp H; Mabee P Database (Oxford); 2015; 2015():bav040. PubMed ID: 25972520 [TBL] [Abstract][Full Text] [Related]
24. Data for registry and quality review can be retrospectively collected using natural language processing from unstructured charts of arthroplasty patients. Shah RF; Bini S; Vail T Bone Joint J; 2020 Jul; 102-B(7_Supple_B):99-104. PubMed ID: 32600201 [TBL] [Abstract][Full Text] [Related]
25. From narrative descriptions to MedDRA: automagically encoding adverse drug reactions. Combi C; Zorzi M; Pozzani G; Moretti U; Arzenton E J Biomed Inform; 2018 Aug; 84():184-199. PubMed ID: 29981491 [TBL] [Abstract][Full Text] [Related]
26. miRiaD: A Text Mining Tool for Detecting Associations of microRNAs with Diseases. Gupta S; Ross KE; Tudor CO; Wu CH; Schmidt CJ; Vijay-Shanker K J Biomed Semantics; 2016 Apr; 7(1):9. PubMed ID: 27216254 [TBL] [Abstract][Full Text] [Related]
27. Clinical Text Data in Machine Learning: Systematic Review. Spasic I; Nenadic G JMIR Med Inform; 2020 Mar; 8(3):e17984. PubMed ID: 32229465 [TBL] [Abstract][Full Text] [Related]
28. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. Koleck TA; Dreisbach C; Bourne PE; Bakken S J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935 [TBL] [Abstract][Full Text] [Related]
29. Development and application of a high throughput natural language processing architecture to convert all clinical documents in a clinical data warehouse into standardized medical vocabularies. Afshar M; Dligach D; Sharma B; Cai X; Boyda J; Birch S; Valdez D; Zelisko S; Joyce C; Modave F; Price R J Am Med Inform Assoc; 2019 Nov; 26(11):1364-1369. PubMed ID: 31145455 [TBL] [Abstract][Full Text] [Related]
30. Natural Language Processing Technologies in Radiology Research and Clinical Applications. Cai T; Giannopoulos AA; Yu S; Kelil T; Ripley B; Kumamaru KK; Rybicki FJ; Mitsouras D Radiographics; 2016; 36(1):176-91. PubMed ID: 26761536 [TBL] [Abstract][Full Text] [Related]
31. Machine learning and natural language processing methods to identify ischemic stroke, acuity and location from radiology reports. Ong CJ; Orfanoudaki A; Zhang R; Caprasse FPM; Hutch M; Ma L; Fard D; Balogun O; Miller MI; Minnig M; Saglam H; Prescott B; Greer DM; Smirnakis S; Bertsimas D PLoS One; 2020; 15(6):e0234908. PubMed ID: 32559211 [TBL] [Abstract][Full Text] [Related]
32. Advances in natural language processing. Hirschberg J; Manning CD Science; 2015 Jul; 349(6245):261-6. PubMed ID: 26185244 [TBL] [Abstract][Full Text] [Related]
33. Natural Language Processing in Radiology: A Systematic Review. Pons E; Braun LM; Hunink MG; Kors JA Radiology; 2016 May; 279(2):329-43. PubMed ID: 27089187 [TBL] [Abstract][Full Text] [Related]
34. Controlled vocabularies for plant anatomical parts optimized for use in data analysis tools and for cross-species studies. Meskauskiene R; Laule O; Ivanov NV; Martin F; Wyss M; Gruissem W; Zimmermann P Plant Methods; 2013 Aug; 9(1):33. PubMed ID: 23958387 [TBL] [Abstract][Full Text] [Related]
36. The First Organ-Based Ontology for Arthropods (Ontology of Arthropod Circulatory Systems - OArCS) and its Integration into a Novel Formalization Scheme for Morphological Descriptions. Wirkner CS; Göpel T; Runge J; Keiler J; Klussmann-Fricke BJ; Huckstorf K; Scholz S; Mikó I; J Yoder M; Richter S Syst Biol; 2017 Sep; 66(5):754-768. PubMed ID: 28123116 [TBL] [Abstract][Full Text] [Related]
37. A comparison of word embeddings for the biomedical natural language processing. Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670 [TBL] [Abstract][Full Text] [Related]
38. Augmenting Qualitative Text Analysis with Natural Language Processing: Methodological Study. Guetterman TC; Chang T; DeJonckheere M; Basu T; Scruggs E; Vydiswaran VGV J Med Internet Res; 2018 Jun; 20(6):e231. PubMed ID: 29959110 [TBL] [Abstract][Full Text] [Related]
39. AISO: Annotation of Image Segments with Ontologies. Lingutla NT; Preece J; Todorovic S; Cooper L; Moore L; Jaiswal P J Biomed Semantics; 2014; 5(1):50. PubMed ID: 25584184 [TBL] [Abstract][Full Text] [Related]