These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33313630)

  • 1. Splitting dynamics of ferrofluid droplets inside a microfluidic T-junction using a pulse-width modulated magnetic field in micro-magnetofluidics.
    Bijarchi MA; Dizani M; Honarmand M; Shafii MB
    Soft Matter; 2021 Feb; 17(5):1317-1329. PubMed ID: 33313630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Investigation on the Dynamics of On-Demand Ferrofluid Drop Formation under a Pulse-Width-Modulated Nonuniform Magnetic Field.
    Bijarchi MA; Shafii MB
    Langmuir; 2020 Jul; 36(26):7724-7740. PubMed ID: 32513001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splitting of droplet with different sizes inside a symmetric T-junction microchannel using an electric field.
    Fallah K; Fattahi E
    Sci Rep; 2022 Feb; 12(1):3226. PubMed ID: 35217700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-demand ferrofluid droplet formation with non-linear magnetic permeability in the presence of high non-uniform magnetic fields.
    Bijarchi MA; Yaghoobi M; Favakeh A; Shafii MB
    Sci Rep; 2022 Jun; 12(1):10868. PubMed ID: 35760843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape evolution and splitting of ferrofluid droplets on a hydrophobic surface in the presence of a magnetic field.
    Banerjee U; Sen AK
    Soft Matter; 2018 Apr; 14(15):2915-2922. PubMed ID: 29610807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic Control of Water Droplet Impact onto Ferrofluid Lubricated Surfaces.
    Banerjee U; Shyam S; Mitra SK
    Langmuir; 2023 Mar; 39(11):4049-4059. PubMed ID: 36893478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple splitting of droplets using multi-furcating microfluidic channels.
    Li Z; Li L; Liao M; He L; Wu P
    Biomicrofluidics; 2019 Mar; 13(2):024112. PubMed ID: 31065311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of magnetic double emulsions under steady and variable magnetic fields from a 3D-printed coaxial capillary device.
    Mohseni A; Azimi AA; Bijarchi MA
    Anal Chim Acta; 2024 Jun; 1309():342573. PubMed ID: 38772651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic behavior of floating magnetic liquid marbles under steady and pulse-width-modulated magnetic fields.
    Dayyani H; Mohseni A; Bijarchi MA
    Lab Chip; 2024 Mar; 24(7):2005-2016. PubMed ID: 38390638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels.
    Cheng WL; Sadr R; Dai J; Han A
    Biomed Microdevices; 2018 Aug; 20(3):72. PubMed ID: 30105562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferrofluid Microdroplet Splitting for Population-Based Microfluidics and Interfacial Tensiometry.
    Latikka M; Backholm M; Baidya A; Ballesio A; Serve A; Beaune G; Timonen JVI; Pradeep T; Ras RHA
    Adv Sci (Weinh); 2020 Jul; 7(14):2000359. PubMed ID: 32714752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement.
    Shen F; Li Y; Liu Z; Li X
    Microfluid Nanofluidics; 2017 Apr; 21(4):. PubMed ID: 28890680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of a Sessile Aqueous Droplet over Spikes of Oil Based Ferrofluid in the Presence of a Magnetic Field.
    Mandal C; Banerjee U; Sen AK
    Langmuir; 2019 Jun; 35(25):8238-8245. PubMed ID: 31141667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous splitting of aqueous droplets at the interface of co-flowing immiscible oil streams in a microchannel.
    Jayaprakash KS; Sen AK
    Soft Matter; 2018 Jan; 14(5):725-733. PubMed ID: 29349475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two Orders of Magnitude Boost in the Detection Limit of Droplet-Based Micro-Magnetofluidics with Planar Hall Effect Sensors.
    Schütt J; Illing R; Volkov O; Kosub T; Granell PN; Nhalil H; Fassbender J; Klein L; Grosz A; Makarov D
    ACS Omega; 2020 Aug; 5(32):20609-20617. PubMed ID: 32832814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and manipulation of ferrofluid droplets with magnetic fields in a microdevice: a numerical parametric study.
    Amiri Roodan V; Gómez-Pastora J; Karampelas IH; González-Fernández C; Bringas E; Ortiz I; Chalmers JJ; Furlani EP; Swihart MT
    Soft Matter; 2020 Oct; 16(41):9506-9518. PubMed ID: 32966533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Valves for Selective on-Chip Droplet Splitting at Multiple Sites.
    Agnihotri SN; Raveshi MR; Bhardwaj R; Neild A
    Langmuir; 2020 Feb; 36(5):1138-1146. PubMed ID: 31968938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and Theoretical Investigation on the Dynamic Response of Ferrofluid Liquid Marbles to Steady and Pulsating Magnetic Fields.
    Mohammadrashidi M; Bijarchi MA; Shafii MB; Taghipoor M
    Langmuir; 2023 Feb; 39(6):2246-2259. PubMed ID: 36722776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping and Coalescence of Diamagnetic Aqueous Droplets Using Negative Magnetophoresis.
    Jain SK; Banerjee U; Sen AK
    Langmuir; 2020 Jun; 36(21):5960-5966. PubMed ID: 32388985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic regulation on evaporation behavior of ferrofluid sessile droplets.
    Wang QY; Zhu GP
    Electrophoresis; 2023 Dec; 44(23):1879-1888. PubMed ID: 37409390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.