These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33313672)

  • 1. ITP-Pred: an interpretable method for predicting, therapeutic peptides with fused features low-dimension representation.
    Cai L; Wang L; Fu X; Xia C; Zeng X; Zou Q
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning.
    Wei L; Zhou C; Su R; Zou Q
    Bioinformatics; 2019 Nov; 35(21):4272-4280. PubMed ID: 30994882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50).
    Qureshi A; Tandon H; Kumar M
    Biopolymers; 2015 Nov; 104(6):753-63. PubMed ID: 26213387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AntiCP 2.0: an updated model for predicting anticancer peptides.
    Agrawal P; Bhagat D; Mahalwal M; Sharma N; Raghava GPS
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32770192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SkipCPP-Pred: an improved and promising sequence-based predictor for predicting cell-penetrating peptides.
    Wei L; Tang J; Zou Q
    BMC Genomics; 2017 Oct; 18(Suppl 7):742. PubMed ID: 29513192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PPTPP: a novel therapeutic peptide prediction method using physicochemical property encoding and adaptive feature representation learning.
    Zhang YP; Zou Q
    Bioinformatics; 2020 Jul; 36(13):3982-3987. PubMed ID: 32348463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iQSP: A Sequence-Based Tool for the Prediction and Analysis of Quorum Sensing Peptides via Chou's 5-Steps Rule and Informative Physicochemical Properties.
    Charoenkwan P; Schaduangrat N; Nantasenamat C; Piacham T; Shoombuatong W
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31861928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AIEpred: An Ensemble Predictive Model of Classifier Chain to Identify Anti-Inflammatory Peptides.
    Zhang J; Zhang Z; Pu L; Tang J; Guo F
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1831-1840. PubMed ID: 31985437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides.
    Pandey P; Patel V; George NV; Mallajosyula SS
    J Proteome Res; 2018 Sep; 17(9):3214-3222. PubMed ID: 30032609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides.
    Rao B; Zhou C; Zhang G; Su R; Wei L
    Brief Bioinform; 2020 Sep; 21(5):1846-1855. PubMed ID: 31729528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THPep: A machine learning-based approach for predicting tumor homing peptides.
    Shoombuatong W; Schaduangrat N; Pratiwi R; Nantasenamat C
    Comput Biol Chem; 2019 Jun; 80():441-451. PubMed ID: 31151025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of antioxidant peptides using a quantitative structure-activity relationship predictor (AnOxPP) based on bidirectional long short-term memory neural network and interpretable amino acid descriptors.
    Qin D; Jiao L; Wang R; Zhao Y; Hao Y; Liang G
    Comput Biol Med; 2023 Mar; 154():106591. PubMed ID: 36701965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticancer peptides prediction with deep representation learning features.
    Lv Z; Cui F; Zou Q; Zhang L; Xu L
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33529337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identify Bitter Peptides by Using Deep Representation Learning Features.
    Jiang J; Lin X; Jiang Y; Jiang L; Lv Z
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OOgenesis_Pred: A sequence-based method for predicting oogenesis proteins by six different modes of Chou's pseudo amino acid composition.
    Rahimi M; Bakhtiarizadeh MR; Mohammadi-Sangcheshmeh A
    J Theor Biol; 2017 Feb; 414():128-136. PubMed ID: 27916703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides.
    Wei L; Zhou C; Chen H; Song J; Su R
    Bioinformatics; 2018 Dec; 34(23):4007-4016. PubMed ID: 29868903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved deep learning method for predicting DNA-binding proteins based on contextual features in amino acid sequences.
    Hu S; Ma R; Wang H
    PLoS One; 2019; 14(11):e0225317. PubMed ID: 31725778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coding of amino acids by texture descriptors.
    Nanni L; Lumini A
    Artif Intell Med; 2010 Jan; 48(1):43-50. PubMed ID: 19892537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HemoNet: Predicting hemolytic activity of peptides with integrated feature learning.
    Yaseen A; Gull S; Akhtar N; Amin I; Minhas F
    J Bioinform Comput Biol; 2021 Oct; 19(5):2150021. PubMed ID: 34353244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.