BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33313675)

  • 1. Computational drug repositioning based on the relationships between substructure-indication.
    Yang J; Zhang D; Liu L; Li G; Cai Y; Zhang Y; Jin H; Chen X
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Prediction of Drug Phenotypic Effects Based on Substructure-Phenotype Associations.
    Yang J; Zhang D; Cai Y; Yu K; Li M; Liu L; Chen X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):256-265. PubMed ID: 35239490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global optimization-based inference of chemogenomic features from drug-target interactions.
    Zu S; Chen T; Li S
    Bioinformatics; 2015 Aug; 31(15):2523-9. PubMed ID: 25819672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DAPredict: a database for drug action phenotype prediction.
    Meng Q; Cai Y; Zhou K; Xu F; Huo D; Xie H; Yu M; Zhang D; Chen X
    Database (Oxford); 2024 Jan; 2024():. PubMed ID: 38242684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico drug repositioning based on the integration of chemical, genomic and pharmacological spaces.
    Chen H; Zhang Z; Zhang J
    BMC Bioinformatics; 2021 Feb; 22(1):52. PubMed ID: 33557749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovering Proangiogenic Drugs in Ischemic Stroke Based on the Relationship between Protein Domain and Drug Substructure.
    Li Y; Zhu H; Yang J; Ke K; Zhu Y; Chen L; Qu Y; Suo R; Chen X; Zhu Y
    ACS Chem Neurosci; 2019 Jan; 10(1):507-517. PubMed ID: 30346717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational drug repositioning for ischemic stroke: neuroprotective drug discovery.
    Li Y; Yang J; Zhang Y; Meng Q; Bender A; Chen X
    Future Med Chem; 2021 Aug; 13(15):1271-1283. PubMed ID: 34137272
    [No Abstract]   [Full Text] [Related]  

  • 8. DMAP: a connectivity map database to enable identification of novel drug repositioning candidates.
    Huang H; Nguyen T; Ibrahim S; Shantharam S; Yue Z; Chen JY
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S4. PubMed ID: 26423722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data.
    Wang Y; Chen S; Deng N; Wang Y
    PLoS One; 2013; 8(11):e78518. PubMed ID: 24244318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Link Prediction Only With Interaction Data and its Application on Drug Repositioning.
    Liu J; Zuo Z; Wu G
    IEEE Trans Nanobioscience; 2020 Jul; 19(3):547-555. PubMed ID: 32340956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review of Recent Developments and Progress in Computational Drug Repositioning.
    Shi W; Chen X; Deng L
    Curr Pharm Des; 2020; 26(26):3059-3068. PubMed ID: 31951162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm.
    Luo H; Wang J; Li M; Luo J; Peng X; Wu FX; Pan Y
    Bioinformatics; 2016 Sep; 32(17):2664-71. PubMed ID: 27153662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational drug repositioning through heterogeneous network clustering.
    Wu C; Gudivada RC; Aronow BJ; Jegga AG
    BMC Syst Biol; 2013; 7 Suppl 5(Suppl 5):S6. PubMed ID: 24564976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug Repositioning by Integrating Known Disease-Gene and Drug-Target Associations in a Semi-supervised Learning Model.
    Le DH; Nguyen-Ngoc D
    Acta Biotheor; 2018 Dec; 66(4):315-331. PubMed ID: 29700660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning.
    Wu Z; Cheng F; Li J; Li W; Liu G; Tang Y
    Brief Bioinform; 2017 Mar; 18(2):333-347. PubMed ID: 26944082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Computational Bipartite Graph-Based Drug Repurposing Method.
    Zheng S; Ma H; Wang J; Li J
    Methods Mol Biol; 2019; 1903():115-127. PubMed ID: 30547439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MeSHDD: Literature-based drug-drug similarity for drug repositioning.
    Brown AS; Patel CJ
    J Am Med Inform Assoc; 2017 May; 24(3):614-618. PubMed ID: 27678460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target-Based Drug Repositioning Using Large-Scale Chemical-Protein Interactome Data.
    Sawada R; Iwata H; Mizutani S; Yamanishi Y
    J Chem Inf Model; 2015 Dec; 55(12):2717-30. PubMed ID: 26580494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of Drug Repositioning Based Chemical-induced Cell Line Expression Data.
    Wang F; Lei X; Wu FX
    Curr Med Chem; 2020; 27(32):5340-5350. PubMed ID: 30381060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovering patterns in drug-protein interactions based on their fingerprints.
    Luo W; Chan KC
    BMC Bioinformatics; 2012 Jun; 13 Suppl 9(Suppl 9):S4. PubMed ID: 22901089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.