BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 33313902)

  • 41. A non-canonical DNA structure is a binding motif for the transcription factor SP1 in vitro.
    Raiber EA; Kranaster R; Lam E; Nikan M; Balasubramanian S
    Nucleic Acids Res; 2012 Feb; 40(4):1499-508. PubMed ID: 22021377
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preventing oxidation of cellular XRCC1 affects PARP-mediated DNA damage responses.
    Horton JK; Stefanick DF; Gassman NR; Williams JG; Gabel SA; Cuneo MJ; Prasad R; Kedar PS; Derose EF; Hou EW; London RE; Wilson SH
    DNA Repair (Amst); 2013 Sep; 12(9):774-85. PubMed ID: 23871146
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Double-stranded flanking ends affect the folding kinetics and conformational equilibrium of G-quadruplexes forming sequences within the promoter of KIT oncogene.
    Vesco G; Lamperti M; Salerno D; Marrano CA; Cassina V; Rigo R; Buglione E; Bondani M; Nicoletto G; Mantegazza F; Sissi C; Nardo L
    Nucleic Acids Res; 2021 Sep; 49(17):9724-9737. PubMed ID: 34478543
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New perspectives on the plant PARP family: Arabidopsis PARP3 is inactive, and PARP1 exhibits predominant poly (ADP-ribose) polymerase activity in response to DNA damage.
    Gu Z; Pan W; Chen W; Lian Q; Wu Q; Lv Z; Cheng X; Ge X
    BMC Plant Biol; 2019 Aug; 19(1):364. PubMed ID: 31426748
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fe
    Malina J; Kostrhunova H; Scott P; Brabec V
    Chemistry; 2021 Aug; 27(45):11682-11692. PubMed ID: 34048082
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Targeting Canine
    Zorzan E; Da Ros S; Giantin M; Shahidian LZ; Guerra G; Palumbo M; Sissi C; Dacasto M
    J Pharmacol Exp Ther; 2018 Dec; 367(3):461-472. PubMed ID: 30275152
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluorescent sensors of PARP-1 structural dynamics and allosteric regulation in response to DNA damage.
    Steffen JD; McCauley MM; Pascal JM
    Nucleic Acids Res; 2016 Nov; 44(20):9771-9783. PubMed ID: 27530425
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A small molecule that disrupts G-quadruplex DNA structure and enhances gene expression.
    Waller ZA; Sewitz SA; Hsu ST; Balasubramanian S
    J Am Chem Soc; 2009 Sep; 131(35):12628-33. PubMed ID: 19689109
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Destabilisation of the c-kit1 G-quadruplex structure by N
    Laddachote S; Nagata M; Yoshida W
    Biochem Biophys Res Commun; 2020 Apr; 524(2):472-476. PubMed ID: 32008744
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermodynamic stability and folding kinetics of the major G-quadruplex and its loop isomers formed in the nuclease hypersensitive element in the human c-Myc promoter: effect of loops and flanking segments on the stability of parallel-stranded intramolecular G-quadruplexes.
    Hatzakis E; Okamoto K; Yang D
    Biochemistry; 2010 Nov; 49(43):9152-60. PubMed ID: 20849082
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oxidative Modification of Guanine in a Potential Z-DNA-Forming Sequence of a Gene Promoter Impacts Gene Expression.
    Fleming AM; Zhu J; Ding Y; Esders S; Burrows CJ
    Chem Res Toxicol; 2019 May; 32(5):899-909. PubMed ID: 30821442
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure.
    Hou Y; Li F; Zhang R; Li S; Liu H; Qin ZS; Sun X
    Epigenetics; 2019 Sep; 14(9):894-911. PubMed ID: 31177910
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Non-duplex G-Quadruplex Structures Emerge as Mediators of Epigenetic Modifications.
    Mukherjee AK; Sharma S; Chowdhury S
    Trends Genet; 2019 Feb; 35(2):129-144. PubMed ID: 30527765
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interplay of Guanine Oxidation and G-Quadruplex Folding in Gene Promoters.
    Fleming AM; Burrows CJ
    J Am Chem Soc; 2020 Jan; 142(3):1115-1136. PubMed ID: 31880930
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Extended molecular dynamics of a c-kit promoter quadruplex.
    Islam B; Stadlbauer P; Krepl M; Koca J; Neidle S; Haider S; Sponer J
    Nucleic Acids Res; 2015 Oct; 43(18):8673-93. PubMed ID: 26245347
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Targeting G-quadruplex DNA structures in the telomere and oncogene promoter regions by benzimidazole‒carbazole ligands.
    Kaulage MH; Maji B; Pasadi S; Ali A; Bhattacharya S; Muniyappa K
    Eur J Med Chem; 2018 Mar; 148():178-194. PubMed ID: 29459277
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cruciform DNA Sequences in Gene Promoters Can Impact Transcription upon Oxidative Modification of 2'-Deoxyguanosine.
    Fleming AM; Zhu J; Jara-Espejo M; Burrows CJ
    Biochemistry; 2020 Jul; 59(28):2616-2626. PubMed ID: 32567845
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions.
    Qin Y; Hurley LH
    Biochimie; 2008 Aug; 90(8):1149-71. PubMed ID: 18355457
    [TBL] [Abstract][Full Text] [Related]  

  • 59. G-Quadruplex Modulation of SP1 Functional Binding Sites at the
    Da Ros S; Nicoletto G; Rigo R; Ceschi S; Zorzan E; Dacasto M; Giantin M; Sissi C
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33396937
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Formation of pseudosymmetrical G-quadruplex and i-motif structures in the proximal promoter region of the RET oncogene.
    Guo K; Pourpak A; Beetz-Rogers K; Gokhale V; Sun D; Hurley LH
    J Am Chem Soc; 2007 Aug; 129(33):10220-8. PubMed ID: 17672459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.