These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Implication of EZH2 in the Pro-Proliferative and Apoptosis-Resistant Phenotype of Pulmonary Artery Smooth Muscle Cells in PAH: A Transcriptomic and Proteomic Approach. Habbout K; Omura J; Awada C; Bourgeois A; Grobs Y; Krishna V; Breuils-Bonnet S; Tremblay E; Mkannez G; Martineau S; Nadeau V; Roux-Dalvai F; Orcholski M; Jeyaseelan J; Gutstein D; Potus F; Provencher S; Bonnet S; Paulin R; Boucherat O Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33803922 [TBL] [Abstract][Full Text] [Related]
4. Nur77 downregulation triggers pulmonary artery smooth muscle cell proliferation and migration in mice with hypoxic pulmonary hypertension via the Axin2-β-catenin signaling pathway. Nie X; Tan J; Dai Y; Mao W; Chen Y; Qin G; Li G; Shen C; Zhao J; Chen J Vascul Pharmacol; 2016 Dec; 87():230-241. PubMed ID: 27871853 [TBL] [Abstract][Full Text] [Related]
5. Renin-angiotensin system regulates pulmonary arterial smooth muscle cell migration in chronic thromboembolic pulmonary hypertension. Zhang YX; Li JF; Yang YH; Zhai ZG; Gu S; Liu Y; Miao R; Zhong PP; Wang Y; Huang XX; Wang C Am J Physiol Lung Cell Mol Physiol; 2018 Feb; 314(2):L276-L286. PubMed ID: 29122755 [TBL] [Abstract][Full Text] [Related]
6. Smooth Muscle Ythdf2 Abrogation Ameliorates Pulmonary Vascular Remodeling by Regulating Myadm Transcript Stability. Wang J; Shen Y; Zhang Y; Lin D; Wang Q; Sun X; Wei D; Shen B; Chen J; Ji Y; Fulton D; Yu Y; Chen F; Hu L Hypertension; 2024 Aug; 81(8):1785-1798. PubMed ID: 38832511 [TBL] [Abstract][Full Text] [Related]
7. FGF12 (Fibroblast Growth Factor 12) Inhibits Vascular Smooth Muscle Cell Remodeling in Pulmonary Arterial Hypertension. Yeo Y; Yi ES; Kim JM; Jo EK; Seo S; Kim RI; Kim KL; Sung JH; Park SG; Suh W Hypertension; 2020 Dec; 76(6):1778-1786. PubMed ID: 33100045 [TBL] [Abstract][Full Text] [Related]
8. CircLMBR1 inhibits phenotypic transformation of hypoxia-induced pulmonary artery smooth muscle via the splicing factor PUF60. Wang H; Gao Y; Bai J; Liu H; Li Y; Zhang J; Ma C; Zhao X; Zhang L; Wan K; Zhu D Eur J Pharmacol; 2024 Oct; 980():176855. PubMed ID: 39059570 [TBL] [Abstract][Full Text] [Related]
9. MicroRNA-137 Inhibited Hypoxia-Induced Proliferation of Pulmonary Artery Smooth Muscle Cells by Targeting Calpain-2. Ge XY; Zhu TT; Yao MZ; Liu H; Wu Q; Qiao J; Zhang WF; Hu CP Biomed Res Int; 2021; 2021():2202888. PubMed ID: 34513987 [TBL] [Abstract][Full Text] [Related]
10. MEIS1 regulated proliferation and migration of pulmonary artery smooth muscle cells in hypoxia-induced pulmonary hypertension. Yao MZ; Ge XY; Liu T; Huang N; Liu H; Chen Y; Zhang Z; Hu CP Life Sci; 2020 Aug; 255():117822. PubMed ID: 32450174 [TBL] [Abstract][Full Text] [Related]
11. MiR-18a-5p contributes to enhanced proliferation and migration of PASMCs via targeting Notch2 in pulmonary arterial hypertension. Miao R; Liu W; Qi C; Song Y; Zhang Y; Fu Y; Liu W; Lang Y; Zhang Y; Zhang Z Life Sci; 2020 Sep; 257():117919. PubMed ID: 32585247 [TBL] [Abstract][Full Text] [Related]
12. DNA methylation signatures of pulmonary arterial smooth muscle cells in chronic thromboembolic pulmonary hypertension. Wang Y; Huang X; Leng D; Li J; Wang L; Liang Y; Wang J; Miao R; Jiang T Physiol Genomics; 2018 May; 50(5):313-322. PubMed ID: 29473816 [TBL] [Abstract][Full Text] [Related]
13. miR-143 and miR-145 promote hypoxia-induced proliferation and migration of pulmonary arterial smooth muscle cells through regulating ABCA1 expression. Yue Y; Zhang Z; Zhang L; Chen S; Guo Y; Hong Y Cardiovasc Pathol; 2018; 37():15-25. PubMed ID: 30195228 [TBL] [Abstract][Full Text] [Related]
14. Silencing of sodium-hydrogen exchanger 1 attenuates the proliferation, hypertrophy, and migration of pulmonary artery smooth muscle cells via E2F1. Yu L; Hales CA Am J Respir Cell Mol Biol; 2011 Nov; 45(5):923-30. PubMed ID: 21454803 [TBL] [Abstract][Full Text] [Related]
15. Notch3 signaling activation in smooth muscle cells promotes extrauterine growth restriction-induced pulmonary hypertension. Wang Y; Dai S; Cheng X; Prado E; Yan L; Hu J; He Q; Lv Y; Lv Y; Du L Nutr Metab Cardiovasc Dis; 2019 Jun; 29(6):639-651. PubMed ID: 30954415 [TBL] [Abstract][Full Text] [Related]
16. Differentially expressed plasma microRNAs and the potential regulatory function of Let-7b in chronic thromboembolic pulmonary hypertension. Guo L; Yang Y; Liu J; Wang L; Li J; Wang Y; Liu Y; Gu S; Gan H; Cai J; Yuan JX; Wang J; Wang C PLoS One; 2014; 9(6):e101055. PubMed ID: 24978044 [TBL] [Abstract][Full Text] [Related]
17. Magnesium Supplementation Attenuates Pulmonary Hypertension via Regulation of Magnesium Transporters. Wang D; Zhu ZL; Lin DC; Zheng SY; Chuang KH; Gui LX; Yao RH; Zhu WJ; Sham JSK; Lin MJ Hypertension; 2021 Feb; 77(2):617-631. PubMed ID: 33356397 [TBL] [Abstract][Full Text] [Related]
18. Involvement of the bone morphogenetic protein system in endothelin- and aldosterone-induced cell proliferation of pulmonary arterial smooth muscle cells isolated from human patients with pulmonary arterial hypertension. Yamanaka R; Otsuka F; Nakamura K; Yamashita M; Otani H; Takeda M; Matsumoto Y; Kusano KF; Ito H; Makino H Hypertens Res; 2010 May; 33(5):435-45. PubMed ID: 20186146 [TBL] [Abstract][Full Text] [Related]
19. Selenoprotein P Promotes the Development of Pulmonary Arterial Hypertension: Possible Novel Therapeutic Target. Kikuchi N; Satoh K; Kurosawa R; Yaoita N; Elias-Al-Mamun M; Siddique MAH; Omura J; Satoh T; Nogi M; Sunamura S; Miyata S; Saito Y; Hoshikawa Y; Okada Y; Shimokawa H Circulation; 2018 Aug; 138(6):600-623. PubMed ID: 29636330 [TBL] [Abstract][Full Text] [Related]
20. MiR-593-5p promotes the development of hypoxic-induced pulmonary hypertension via targeting PLK1. Zhao TF; Wang SY; Zou XZ; Zhao HD Eur Rev Med Pharmacol Sci; 2019 Apr; 23(8):3495-3502. PubMed ID: 31081105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]