These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 33314263)

  • 1. Quantitative proteomic analysis to capture the role of heat-accumulated proteins in moss plant acquired thermotolerance.
    Guihur A; Fauvet B; Finka A; Quadroni M; Goloubinoff P
    Plant Cell Environ; 2021 Jul; 44(7):2117-2133. PubMed ID: 33314263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery from heat, salt and osmotic stress in Physcomitrella patens requires a functional small heat shock protein PpHsp16.4.
    Ruibal C; Castro A; Carballo V; Szabados L; Vidal S
    BMC Plant Biol; 2013 Nov; 13():174. PubMed ID: 24188413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteomics in tall fescue to reveal underlying mechanisms for improving Photosystem II thermotolerance during heat stress memory.
    Wang G; Wang X; Li D; Yang X; Hu T; Fu J
    BMC Genomics; 2024 Jul; 25(1):683. PubMed ID: 38982385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CNGCb and CNGCd genes from Physcomitrella patens moss encode for thermosensory calcium channels responding to fluidity changes in the plasma membrane.
    Finka A; Goloubinoff P
    Cell Stress Chaperones; 2014 Jan; 19(1):83-90. PubMed ID: 23666745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat Shock Signaling in Land Plants: From Plasma Membrane Sensing to the Transcription of Small Heat Shock Proteins.
    Bourgine B; Guihur A
    Front Plant Sci; 2021; 12():710801. PubMed ID: 34434209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance.
    Finka A; Cuendet AF; Maathuis FJ; Saidi Y; Goloubinoff P
    Plant Cell; 2012 Aug; 24(8):3333-48. PubMed ID: 22904147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome and transcriptome reveal the involvement of heat shock proteins and antioxidant system in thermotolerance of Clematis florida.
    Jiang C; Bi Y; Mo J; Zhang R; Qu M; Feng S; Essemine J
    Sci Rep; 2020 Jun; 10(1):8883. PubMed ID: 32483281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of transcriptional response to heat stress in Rhazya stricta.
    Obaid AY; Sabir JS; Atef A; Liu X; Edris S; El-Domyati FM; Mutwakil MZ; Gadalla NO; Hajrah NH; Al-Kordy MA; Hall N; Bahieldin A; Jansen RK
    BMC Plant Biol; 2016 Nov; 16(1):252. PubMed ID: 27842501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of elevated CO
    Ahammed GJ; Guang Y; Yang Y; Chen J
    Plant Cell Rep; 2021 Dec; 40(12):2273-2286. PubMed ID: 34269828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of gene expression in pollen of cotton (Gossypium hirsutum) indicate downregulation as a feature of thermotolerance.
    Masoomi-Aladizgeh F; McKay MJ; Asar Y; Haynes PA; Atwell BJ
    Plant J; 2022 Feb; 109(4):965-979. PubMed ID: 34837283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.).
    Rana RM; Dong S; Tang H; Ahmad F; Zhang H
    J Exp Bot; 2012 Oct; 63(16):6003-16. PubMed ID: 22996677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation.
    Charng YY; Liu HC; Liu NY; Hsu FC; Ko SS
    Plant Physiol; 2006 Apr; 140(4):1297-305. PubMed ID: 16500991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative proteomics of heat-treated human cells show an across-the-board mild depletion of housekeeping proteins to massively accumulate few HSPs.
    Finka A; Sood V; Quadroni M; Rios Pde L; Goloubinoff P
    Cell Stress Chaperones; 2015 Jul; 20(4):605-20. PubMed ID: 25847399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecotypic variation in chloroplast small heat-shock proteins and related thermotolerance in Chenopodium album.
    Shakeel S; Haq NU; Heckathorn SA; Hamilton EW; Luthe DS
    Plant Physiol Biochem; 2011 Aug; 49(8):898-908. PubMed ID: 21684754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elongation factor MdEF-Tu coordinates with heat shock protein MdHsp70 to enhance apple thermotolerance.
    Che R; Liu Y; Yan S; Yang C; Sun Y; Liu C; Ma F
    Plant J; 2024 Feb; 117(4):1250-1263. PubMed ID: 37991990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks.
    Fragkostefanakis S; Röth S; Schleiff E; Scharf KD
    Plant Cell Environ; 2015 Sep; 38(9):1881-95. PubMed ID: 24995670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Heat Shock Factor Pathways by γ-aminobutyric Acid (GABA) Associated with Thermotolerance of Creeping Bentgrass.
    Liu T; Liu Z; Li Z; Peng Y; Zhang X; Ma X; Huang L; Liu W; Nie G; He L
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31547604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties.
    Lin MY; Chai KH; Ko SS; Kuang LY; Lur HS; Charng YY
    Plant Physiol; 2014 Apr; 164(4):2045-53. PubMed ID: 24520156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SoHSC70 positively regulates thermotolerance by alleviating cell membrane damage, reducing ROS accumulation, and improving activities of antioxidant enzymes.
    Qi C; Lin X; Li S; Liu L; Wang Z; Li Y; Bai R; Xie Q; Zhang N; Ren S; Zhao B; Li X; Fan S; Guo YD
    Plant Sci; 2019 Jun; 283():385-395. PubMed ID: 31128709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis.
    Guan Q; Yue X; Zeng H; Zhu J
    Plant Cell; 2014 Jan; 26(1):438-53. PubMed ID: 24415771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.