These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33314275)

  • 1. Dielectric spectroscopy of red blood cells in sickle cell disease.
    Liu J; Qiang Y; Du E
    Electrophoresis; 2021 Mar; 42(5):667-675. PubMed ID: 33314275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical Impedance Characterization of Erythrocyte Response to Cyclic Hypoxia in Sickle Cell Disease.
    Liu J; Qiang Y; Alvarez O; Du E
    ACS Sens; 2019 Jul; 4(7):1783-1790. PubMed ID: 31083931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A portable impedance microflow cytometer for measuring cellular response to hypoxia.
    Dieujuste D; Qiang Y; Du E
    Biotechnol Bioeng; 2021 Oct; 118(10):4041-4051. PubMed ID: 34232511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impedance spectroscopy-based cell/particle position detection in microfluidic systems.
    Wang H; Sobahi N; Han A
    Lab Chip; 2017 Mar; 17(7):1264-1269. PubMed ID: 28267168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free virus identification and characterization using electrochemical impedance spectroscopy.
    Poenar DP; Iliescu C; Boulaire J; Yu H
    Electrophoresis; 2014 Feb; 35(2-3):433-40. PubMed ID: 24285469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring time course of human whole blood coagulation using a microfluidic dielectric sensor with a 3D capacitive structure.
    Maji D; Suster MA; Stavrou E; Gurkan UA; Mohseni P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5904-7. PubMed ID: 26737635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous polymerization and adhesion under hypoxia in sickle cell disease.
    Papageorgiou DP; Abidi SZ; Chang HY; Li X; Kato GJ; Karniadakis GE; Suresh S; Dao M
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9473-9478. PubMed ID: 30190429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All electronic approach for high-throughput cell trapping and lysis with electrical impedance monitoring.
    Ameri SK; Singh PK; Dokmeci MR; Khademhosseini A; Xu Q; Sonkusale SR
    Biosens Bioelectron; 2014 Apr; 54():462-7. PubMed ID: 24315878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A miniaturized wash-free microfluidic assay for electrical impedance-based assessment of red blood cell-mediated microvascular occlusion.
    Oshabaheebwa S; Delianides CA; Patwardhan AA; Evans EN; Sekyonda Z; Bode A; Apio FM; Mutuluuza CK; Sheehan VA; Suster MA; Gurkan UA; Mohseni P
    Biosens Bioelectron; 2024 Aug; 258():116352. PubMed ID: 38718635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid electrical impedance detection of sickle cell vaso-occlusion in microfluidic device.
    Qiang Y; Dieujuste D; Liu J; Alvarez O; Du E
    Biomed Microdevices; 2023 Jun; 25(3):23. PubMed ID: 37347436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical impedance microflow cytometry with oxygen control for detection of sickle cells.
    Liu J; Qiang Y; Alvarez O; Du E
    Sens Actuators B Chem; 2018 Feb; 255(Pt 2):2392-2398. PubMed ID: 29731543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual variability in response to a single sickling event for normal, sickle cell, and sickle trait erythrocytes.
    Tarasev M; Muchnik M; Light L; Alfano K; Chakraborty S
    Transl Res; 2017 Mar; 181():96-107. PubMed ID: 27728824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The physical foundation of vasoocclusion in sickle cell disease.
    Aprelev A; Stephenson W; Noh HM; Meier M; Ferrone FA
    Biophys J; 2012 Oct; 103(8):L38-40. PubMed ID: 23083726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.
    Mamouni J; Yang L
    Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric properties of isolated adrenal chromaffin cells determined by microfluidic impedance spectroscopy.
    Sabuncu AC; Stacey M; Craviso GL; Semenova N; Vernier PT; Leblanc N; Chatterjee I; Zaklit J
    Bioelectrochemistry; 2018 Feb; 119():84-91. PubMed ID: 28918192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Speed Single-Cell Dielectric Spectroscopy.
    Spencer D; Morgan H
    ACS Sens; 2020 Feb; 5(2):423-430. PubMed ID: 32013406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential dielectric responses of chondrocyte and Jurkat cells in electromanipulation buffers.
    Sabuncu AC; Asmar AJ; Stacey MW; Beskok A
    Electrophoresis; 2015 Jul; 36(13):1499-506. PubMed ID: 25958778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-Chip Impedance Spectroscopy of Malaria-Infected Red Blood Cells.
    Panklang N; Techaumnat B; Tanthanuch N; Chotivanich K; Horprathum M; Nakano M
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic approach to study the effect of mechanical stress on erythrocytes in sickle cell disease.
    Lizarralde Iragorri MA; El Hoss S; Brousse V; Lefevre SD; Dussiot M; Xu T; Ferreira AR; Lamarre Y; Silva Pinto AC; Kashima S; Lapouméroulie C; Covas DT; Le Van Kim C; Colin Y; Elion J; Français O; Le Pioufle B; El Nemer W
    Lab Chip; 2018 Sep; 18(19):2975-2984. PubMed ID: 30168832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.