These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 33314481)
1. Role of extracellular matrix components in the formation of biofilms and their contribution to the biocontrol activity of Pseudomonas chlororaphis PCL1606. Heredia-Ponce Z; Gutiérrez-Barranquero JA; Purtschert-Montenegro G; Eberl L; de Vicente A; Cazorla FM Environ Microbiol; 2021 Apr; 23(4):2086-2101. PubMed ID: 33314481 [TBL] [Abstract][Full Text] [Related]
2. Impact of motility and chemotaxis features of the rhizobacterium Pseudomonas chlororaphis PCL1606 on its biocontrol of avocado white root rot. Polonio Á; Vida C; de Vicente A; Cazorla FM Int Microbiol; 2017 Jun; 20(2):95-104. PubMed ID: 28617527 [TBL] [Abstract][Full Text] [Related]
3. Soil Application of a Formulated Biocontrol Rhizobacterium, Tienda S; Vida C; Lagendijk E; de Weert S; Linares I; González-Fernández J; Guirado E; de Vicente A; Cazorla FM Front Microbiol; 2020; 11():1874. PubMed ID: 32849458 [TBL] [Abstract][Full Text] [Related]
4. Fitness Features Involved in the Biocontrol Interaction of Arrebola E; Tienda S; Vida C; de Vicente A; Cazorla FM Front Microbiol; 2019; 10():719. PubMed ID: 31024497 [TBL] [Abstract][Full Text] [Related]
5. Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process. Calderón CE; de Vicente A; Cazorla FM FEMS Microbiol Ecol; 2014 Jul; 89(1):20-31. PubMed ID: 24641321 [TBL] [Abstract][Full Text] [Related]
6. Polyhydroxyalkanoate production by the plant beneficial rhizobacterium Pseudomonas chlororaphis PCL1606 influences survival and rhizospheric performance. Tienda S; Gutiérrez-Barranquero JA; Padilla-Roji I; Arrebola E; de Vicente A; Cazorla FM Microbiol Res; 2024 Jan; 278():127527. PubMed ID: 37863020 [TBL] [Abstract][Full Text] [Related]
7. The Compound 2-Hexyl, 5-Propyl Resorcinol Has a Key Role in Biofilm Formation by the Biocontrol Rhizobacterium Calderón CE; Tienda S; Heredia-Ponce Z; Arrebola E; Cárcamo-Oyarce G; Eberl L; Cazorla FM Front Microbiol; 2019; 10():396. PubMed ID: 30873149 [TBL] [Abstract][Full Text] [Related]
8. Biological role of EPS from Pseudomonas syringae pv. syringae UMAF0158 extracellular matrix, focusing on a Psl-like polysaccharide. Heredia-Ponce Z; Gutiérrez-Barranquero JA; Purtschert-Montenegro G; Eberl L; Cazorla FM; de Vicente A NPJ Biofilms Microbiomes; 2020 Oct; 6(1):37. PubMed ID: 33046713 [TBL] [Abstract][Full Text] [Related]
9. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Cazorla FM; Duckett SB; Bergström ET; Noreen S; Odijk R; Lugtenberg BJ; Thomas-Oates JE; Bloemberg GV Mol Plant Microbe Interact; 2006 Apr; 19(4):418-28. PubMed ID: 16610745 [TBL] [Abstract][Full Text] [Related]
10. Aer Receptors Influence the Arrebola E; Cazorla FM Front Microbiol; 2020; 11():1560. PubMed ID: 32754135 [No Abstract] [Full Text] [Related]
11. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Colvin KM; Irie Y; Tart CS; Urbano R; Whitney JC; Ryder C; Howell PL; Wozniak DJ; Parsek MR Environ Microbiol; 2012 Aug; 14(8):1913-28. PubMed ID: 22176658 [TBL] [Abstract][Full Text] [Related]
12. A spider web strategy of type IV pili-mediated migration to build a fibre-like Psl polysaccharide matrix in Pseudomonas aeruginosa biofilms. Wang S; Parsek MR; Wozniak DJ; Ma LZ Environ Microbiol; 2013 Aug; 15(8):2238-53. PubMed ID: 23425591 [TBL] [Abstract][Full Text] [Related]
13. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. Ma L; Conover M; Lu H; Parsek MR; Bayles K; Wozniak DJ PLoS Pathog; 2009 Mar; 5(3):e1000354. PubMed ID: 19325879 [TBL] [Abstract][Full Text] [Related]
14. Matrix Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and Competitiveness of Chew SC; Yam JKH; Matysik A; Seng ZJ; Klebensberger J; Givskov M; Doyle P; Rice SA; Yang L; Kjelleberg S mBio; 2018 Nov; 9(6):. PubMed ID: 30401769 [TBL] [Abstract][Full Text] [Related]
15. Comparative Genomic Analysis of Pseudomonas chlororaphis PCL1606 Reveals New Insight into Antifungal Compounds Involved in Biocontrol. Calderón CE; Ramos C; de Vicente A; Cazorla FM Mol Plant Microbe Interact; 2015 Mar; 28(3):249-60. PubMed ID: 25679537 [TBL] [Abstract][Full Text] [Related]
16. The exopolysaccharide Psl-eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa. Wang S; Liu X; Liu H; Zhang L; Guo Y; Yu S; Wozniak DJ; Ma LZ Environ Microbiol Rep; 2015 Apr; 7(2):330-40. PubMed ID: 25472701 [TBL] [Abstract][Full Text] [Related]
17. Psl Produced by Mucoid Jones CJ; Wozniak DJ mBio; 2017 Jun; 8(3):. PubMed ID: 28634241 [TBL] [Abstract][Full Text] [Related]
18. The roles of biofilm matrix polysaccharide Psl in mucoid Pseudomonas aeruginosa biofilms. Ma L; Wang S; Wang D; Parsek MR; Wozniak DJ FEMS Immunol Med Microbiol; 2012 Jul; 65(2):377-80. PubMed ID: 22309106 [TBL] [Abstract][Full Text] [Related]
19. Insecticidal features displayed by the beneficial rhizobacterium Pseudomonas chlororaphis PCL1606. Arrebola E; Aprile FR; Calderón CE; de Vicente A; Cazorla FM Int Microbiol; 2022 Nov; 25(4):679-689. PubMed ID: 35670867 [TBL] [Abstract][Full Text] [Related]
20. Untethering and Degradation of the Polysaccharide Matrix Are Essential Steps in the Dispersion Response of Cherny KE; Sauer K J Bacteriol; 2020 Jan; 202(3):. PubMed ID: 31712279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]