These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 33314555)
1. Catalyst-Free Four-Component Polymerization of Propiolic Acids, Benzylamines, Organoboronic Acids, and Formaldehyde toward Functional Poly(propargylamine)s. Wu X; Li W; Hu R; Tang BZ Macromol Rapid Commun; 2021 Mar; 42(6):e2000633. PubMed ID: 33314555 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of tertiary propargylamines via a rationally designed multicomponent reaction of primary amines, formaldehyde, arylboronic acids and alkynes. Wang J; Shen Q; Li P; Peng Y; Song G Org Biomol Chem; 2014 Aug; 12(30):5597-600. PubMed ID: 24969221 [TBL] [Abstract][Full Text] [Related]
3. Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions. González-Béjar M; Peters K; Hallett-Tapley GL; Grenier M; Scaiano JC Chem Commun (Camb); 2013 Feb; 49(17):1732-4. PubMed ID: 23340772 [TBL] [Abstract][Full Text] [Related]
4. Practical highly enantioselective synthesis of propargylamines through a copper-catalyzed one-pot three-component condensation reaction. Gommermann N; Knochel P Chemistry; 2006 May; 12(16):4380-92. PubMed ID: 16557623 [TBL] [Abstract][Full Text] [Related]
5. Catalyst-Free Multicomponent Cyclopolymerizations of Diisocyanides, Activated Alkynes, and 1,4-Dibromo-2,3-Butanedione: a Facile Strategy toward Functional Polyiminofurans Containing Bromomethyl Groups. Zhu G; Fu W; Han B; Shi J; Tong B; Cai Z; Zhi J; Dong Y Macromol Rapid Commun; 2021 Mar; 42(6):e2000463. PubMed ID: 32989821 [TBL] [Abstract][Full Text] [Related]
6. Immobilized Gold Nanoparticles Prepared from Gold(III)-Containing Ionic Liquids on Silica: Application to the Sustainable Synthesis of Propargylamines. Soengas R; Navarro Y; Iglesias MJ; López-Ortiz F Molecules; 2018 Nov; 23(11):. PubMed ID: 30441851 [TBL] [Abstract][Full Text] [Related]
7. Using One Photoredox Catalyst to Simultaneously Mediate Two Different Polymerizations for Photo-Triggered Multi-Component Orthogonal Polymerizations. Zhang W; Shen S; Zhang Z; Huang Y; Weng Y; Chen G Macromol Rapid Commun; 2020 Oct; 41(19):e2000373. PubMed ID: 32808416 [TBL] [Abstract][Full Text] [Related]
8. Metal-Free Multicomponent Tandem Polymerizations of Alkynes, Amines, and Formaldehyde toward Structure- and Sequence-Controlled Luminescent Polyheterocycles. Wei B; Li W; Zhao Z; Qin A; Hu R; Tang BZ J Am Chem Soc; 2017 Apr; 139(14):5075-5084. PubMed ID: 28318273 [TBL] [Abstract][Full Text] [Related]
9. One-pot multi-component route to propargylamines using zinc oxide under solvent-free conditions. Hosseini-Sarvari M; Moeini F Comb Chem High Throughput Screen; 2014; 17(5):439-49. PubMed ID: 24344992 [TBL] [Abstract][Full Text] [Related]
10. Multicomponent Polymerizations of Alkynes, Sulfonyl Azides, and 2-Hydroxybenzonitrile/2-Aminobenzonitrile toward Multifunctional Iminocoumarin/Quinoline-Containing Poly( Xu L; Zhou T; Liao M; Hu R; Tang BZ ACS Macro Lett; 2019 Feb; 8(2):101-106. PubMed ID: 35619415 [TBL] [Abstract][Full Text] [Related]
11. An efficient synthesis of propargylamines via C-H activation catalyzed by copper(I) in ionic liquids. Park SB; Alper H Chem Commun (Camb); 2005 Mar; (10):1315-7. PubMed ID: 15742063 [TBL] [Abstract][Full Text] [Related]
12. Room temperature synthesis of polythioamides from multicomponent polymerization of sulfur, pyridine-activated alkyne, and amines. Zhang L; Hu Y; Hu R; Tang BZ Chem Commun (Camb); 2022 Feb; 58(12):1994-1997. PubMed ID: 35048085 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of Functional Poly(propargyl imine)s by Multicomponent Polymerizations of Bromoarenes, Isonitriles, and Alkynes. Huang H; Qiu Z; Han T; Kwok RTK; Lam JWY; Tang BZ ACS Macro Lett; 2017 Dec; 6(12):1352-1356. PubMed ID: 35650816 [TBL] [Abstract][Full Text] [Related]
14. Direct Construction of Acid-Responsive Poly(indolone)s through Multicomponent Tandem Polymerizations. Qi C; Zheng C; Hu R; Tang BZ ACS Macro Lett; 2019 May; 8(5):569-575. PubMed ID: 35619365 [TBL] [Abstract][Full Text] [Related]
15. Direct enantioselective three-component synthesis of optically active propargylamines in water. Ohara M; Hara Y; Ohnuki T; Nakamura S Chemistry; 2014 Jul; 20(29):8848-51. PubMed ID: 24919989 [TBL] [Abstract][Full Text] [Related]
16. Room-Temperature Metal-Free Multicomponent Polymerizations of Elemental Selenium toward Stable Alicyclic Poly(oxaselenolane)s with High Refractive Index. Wu X; He J; Hu R; Tang BZ J Am Chem Soc; 2021 Sep; 143(38):15723-15731. PubMed ID: 34520199 [TBL] [Abstract][Full Text] [Related]
17. The Asymmetric A³(Aldehyde⁻Alkyne⁻Amine) Coupling: Highly Enantioselective Access to Propargylamines. Mo JN; Su J; Zhao J Molecules; 2019 Mar; 24(7):. PubMed ID: 30925732 [TBL] [Abstract][Full Text] [Related]
18. A simple method for the preparation of propargylamines using molecular sieve modified with copper(II). Fodor A; Kiss A; Debreczeni N; Hell Z; Gresits I Org Biomol Chem; 2010 Oct; 8(20):4575-81. PubMed ID: 20740243 [TBL] [Abstract][Full Text] [Related]
19. Ternary hybrid TiO Panwar V; Jain SL Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():191-201. PubMed ID: 30889691 [TBL] [Abstract][Full Text] [Related]
20. Gold(III) Salen complex-catalyzed synthesis of propargylamines via a three-component coupling reaction. Lo VK; Liu Y; Wong MK; Che CM Org Lett; 2006 Apr; 8(8):1529-32. PubMed ID: 16597102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]