These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 33314563)

  • 21. Carotenoid Biosynthesis during Tomato Fruit Development (Evidence for Tissue-Specific Gene Expression).
    Fraser PD; Truesdale MR; Bird CR; Schuch W; Bramley PM
    Plant Physiol; 1994 May; 105(1):405-413. PubMed ID: 12232210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Colors in the dark: a model for the regulation of carotenoid biosynthesis in etioplasts.
    Rodríguez-Villalón A; Gas E; Rodríguez-Concepción M
    Plant Signal Behav; 2009 Oct; 4(10):965-7. PubMed ID: 19826226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plastids and Carotenoid Accumulation.
    Li L; Yuan H; Zeng Y; Xu Q
    Subcell Biochem; 2016; 79():273-93. PubMed ID: 27485226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Manipulation of Plastidial Protein Quality Control Components as a New Strategy to Improve Carotenoid Contents in Tomato Fruit.
    D'Andrea L; Rodriguez-Concepcion M
    Front Plant Sci; 2019; 10():1071. PubMed ID: 31543891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prospects for Carotenoid Biofortification Targeting Retention and Catabolism.
    Watkins JL; Pogson BJ
    Trends Plant Sci; 2020 May; 25(5):501-512. PubMed ID: 31956035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rewiring carotenoid biosynthesis in plants using a viral vector.
    Majer E; Llorente B; Rodríguez-Concepción M; Daròs JA
    Sci Rep; 2017 Jan; 7():41645. PubMed ID: 28139696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel insights into the contribution of plastoglobules and reactive oxygen species to chromoplast differentiation.
    Morelli L; Torres-Montilla S; Glauser G; Shanmugabalaji V; Kessler F; Rodriguez-Concepcion M
    New Phytol; 2023 Mar; 237(5):1696-1710. PubMed ID: 36307969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production.
    Ravanello MP; Ke D; Alvarez J; Huang B; Shewmaker CK
    Metab Eng; 2003 Oct; 5(4):255-63. PubMed ID: 14642353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of Carotenoid Biosynthesis During Fruit Development.
    Lado J; Zacarías L; Rodrigo MJ
    Subcell Biochem; 2016; 79():161-98. PubMed ID: 27485222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of Carotenoid Biosynthesis and Degradation in Lettuce (
    Brychkova G; de Oliveira CL; Gomes LAA; de Souza Gomes M; Fort A; Esteves-Ferreira AA; Sulpice R; McKeown PC; Spillane C
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional integration of non-native carotenoids into chloroplasts by viral-derived expression of capsanthin-capsorubin synthase in Nicotiana benthamiana.
    Kumagai MH; Keller Y; Bouvier F; Clary D; Camara B
    Plant J; 1998 May; 14(3):305-15. PubMed ID: 9628025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An in vivo plant platform to assess genes encoding native and synthetic enzymes for carotenoid biosynthesis.
    Leonelli L
    Methods Enzymol; 2022; 671():489-509. PubMed ID: 35878991
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carotenoid biofortification in crop plants: citius, altius, fortius.
    Zheng X; Giuliano G; Al-Babili S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Nov; 1865(11):158664. PubMed ID: 32068105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unraveling transcriptomics of sorghum grain carotenoids: a step forward for biofortification.
    Cruet-Burgos C; Rhodes DH
    BMC Genomics; 2023 May; 24(1):233. PubMed ID: 37138226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A fast and simplified method to estimate bioaccessibility of carotenoids from plant tissues.
    Morelli L; Rodriguez-Concepcion M
    Methods Enzymol; 2022; 674():329-341. PubMed ID: 36008011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytological and molecular characterization of carotenoid accumulation in normal and high-lycopene mutant oranges.
    Lu PJ; Wang CY; Yin TT; Zhong SL; Grierson D; Chen KS; Xu CJ
    Sci Rep; 2017 Apr; 7(1):761. PubMed ID: 28396598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways.
    Rodríguez-Villalón A; Pérez-Gil J; Rodríguez-Concepción M
    J Biotechnol; 2008 May; 135(1):78-84. PubMed ID: 18417238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterologous complementation in bacteria for functional analysis of genes encoding carotenoid biosynthetic enzymes.
    Moreno JC; Stange C
    Methods Enzymol; 2022; 671():471-488. PubMed ID: 35878990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue-Specific Apocarotenoid Glycosylation Contributes to Carotenoid Homeostasis in Arabidopsis Leaves.
    Lätari K; Wüst F; Hübner M; Schaub P; Beisel KG; Matsubara S; Beyer P; Welsch R
    Plant Physiol; 2015 Aug; 168(4):1550-62. PubMed ID: 26134165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings.
    Rodríguez-Villalón A; Gas E; Rodríguez-Concepción M
    Plant J; 2009 Nov; 60(3):424-35. PubMed ID: 19594711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.