These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33314626)

  • 1. Characterizing the diverse cells that associate with the developing commissures of the zebrafish forebrain.
    Schnabl J; Litz MPH; Schneider C; PenkoffLidbeck N; Bashiruddin S; Schwartz MS; Alligood K; Devoto SH; Barresi MJF
    Dev Neurobiol; 2021 Jul; 81(5):671-695. PubMed ID: 33314626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hedgehog regulated Slit expression determines commissure and glial cell position in the zebrafish forebrain.
    Barresi MJ; Hutson LD; Chien CB; Karlstrom RO
    Development; 2005 Aug; 132(16):3643-56. PubMed ID: 16033800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frizzled-3a and slit2 genetically interact to modulate midline axon crossing in the telencephalon.
    Hofmeister W; Devine CA; Rothnagel JA; Key B
    Mech Dev; 2012 Jul; 129(5-8):109-24. PubMed ID: 22609481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of a simple scaffold of axon tracts in the brain of the embryonic zebrafish, Brachydanio rerio.
    Wilson SW; Ross LS; Parrett T; Easter SS
    Development; 1990 Jan; 108(1):121-45. PubMed ID: 2351059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Pax protein Noi is required for commissural axon pathway formation in the rostral forebrain.
    Macdonald R; Scholes J; Strähle U; Brennan C; Holder N; Brand M; Wilson SW
    Development; 1997 Jun; 124(12):2397-408. PubMed ID: 9199366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. belladonna/(Ihx2) is required for neural patterning and midline axon guidance in the zebrafish forebrain.
    Seth A; Culverwell J; Walkowicz M; Toro S; Rick JM; Neuhauss SC; Varga ZM; Karlstrom RO
    Development; 2006 Feb; 133(4):725-35. PubMed ID: 16436624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wnt Signaling Regulates Ipsilateral Pathfinding in the Zebrafish Forebrain through slit3.
    Zhang Q; Zhang C; Zhang C; Peng G
    Neuroscience; 2020 Nov; 449():9-20. PubMed ID: 32949671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemoattractant axon guidance cues regulate de novo axon trajectories in the embryonic forebrain of zebrafish.
    Gaudin A; Hofmeister W; Key B
    Dev Biol; 2012 Jul; 367(2):126-39. PubMed ID: 22575706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rab33a and Rab33ba mediate the outgrowth of forebrain commissural axons in the zebrafish brain.
    Huang L; Urasaki A; Inagaki N
    Sci Rep; 2019 Feb; 9(1):1799. PubMed ID: 30755680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planar cell polarity genes Frizzled3a, Vangl2, and Scribble are required for spinal commissural axon guidance.
    Sun SD; Purdy AM; Walsh GS
    BMC Neurosci; 2016 Dec; 17(1):83. PubMed ID: 27955617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRMP2 and CRMP4 are required for the formation of commissural tracts in the developing zebrafish forebrain.
    Guo Y; Oliveros CF; Ohshima T
    Dev Neurobiol; 2022 Sep; 82(6):533-544. PubMed ID: 35929227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and putative role of neuropilin-1 in the early scaffold of axon tracts in embryonic Xenopus brain.
    Anderson RB; Jackson SC; Fujisawa H; Key B
    Dev Dyn; 2000 Sep; 219(1):102-8. PubMed ID: 10974677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Midline crossing is not required for subsequent pathfinding decisions in commissural neurons.
    Bonner J; Letko M; Nikolaus OB; Krug L; Cooper A; Chadwick B; Conklin P; Lim A; Chien CB; Dorsky RI
    Neural Dev; 2012 Jun; 7():18. PubMed ID: 22672767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robo-Slit interactions regulate longitudinal axon pathfinding in the embryonic vertebrate brain.
    Devine CA; Key B
    Dev Biol; 2008 Jan; 313(1):371-83. PubMed ID: 18061159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DCC plays a role in navigation of forebrain axons across the ventral midbrain commissure in embryonic xenopus.
    Anderson RB; Cooper HM; Jackson SC; Seaman C; Key B
    Dev Biol; 2000 Jan; 217(2):244-53. PubMed ID: 10625550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early Commissural Diencephalic Neurons Control Habenular Axon Extension and Targeting.
    Beretta CA; Dross N; Guglielmi L; Bankhead P; Soulika M; Gutierrez-Triana JA; Paolini A; Poggi L; Falk J; Ryu S; Kapsimali M; Engel U; Carl M
    Curr Biol; 2017 Jan; 27(2):270-278. PubMed ID: 28065605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The corpus callosum, the other great forebrain commissures, and the septum pellucidum: anatomy, development, and malformation.
    Raybaud C
    Neuroradiology; 2010 Jun; 52(6):447-77. PubMed ID: 20422408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robo2--slit and Dcc--netrin1 coordinate neuron axonal pathfinding within the embryonic axon tracts.
    Zhang C; Gao J; Zhang H; Sun L; Peng G
    J Neurosci; 2012 Sep; 32(36):12589-602. PubMed ID: 22956848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slit-Robo signals regulate pioneer axon pathfinding of the tract of the postoptic commissure in the mammalian forebrain.
    Ricaño-Cornejo I; Altick AL; García-Peña CM; Nural HF; Echevarría D; Miquelajáuregui A; Mastick GS; Varela-Echavarría A
    J Neurosci Res; 2011 Oct; 89(10):1531-41. PubMed ID: 21688288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular and molecular tunnels surrounding the forebrain commissures of human fetuses.
    Lent R; Uziel D; Baudrimont M; Fallet C
    J Comp Neurol; 2005 Mar; 483(4):375-82. PubMed ID: 15700272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.